搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚酰亚胺电导率随温度和电场强度的变化规律

王松 武占成 唐小金 孙永卫 易忠

引用本文:
Citation:

聚酰亚胺电导率随温度和电场强度的变化规律

王松, 武占成, 唐小金, 孙永卫, 易忠

Study on temperature and electric field dependence of conductivity in polyimide

Wang Song, Wu Zhan-Cheng, Tang Xiao-Jin, Sun Yong-Wei, Yi Zhong
PDF
导出引用
  • 介质深层充电对航天器安全运行构成了重大威胁. 以聚酰亚胺为代表的此类聚合物绝缘介质的电导率受温度影响显著, 又因为充电过程中局部产生强电场(107 V/m量级), 因此, 其电导率模型需要综合考虑温度和强电场的影响, 这对介质深层充电的仿真评估意义重大. 已有的两类模型, 不是低温区间不适用, 就是没有充分考虑强电场的影响. 基于跳跃电导理论, 本文分析对比了现有电导率模型, 提出了适用于较宽温度范围且合理考虑强电场增强效应的电导率新模型, 并采用某型聚酰亚胺电导率测试数据做出验证. 此外, 为了提高新模型在强电场下的低温适用范围, 尝试对强电场因子中的温度做变换, 取得了满意的效果. 参数敏感度分析表明新模型在电导率拟合与外推方面具有参数少、适用性强的优势.
    The deep dielectric charging (DDC) imposes a potential threat on spacecrafts. On the one hand, this kind of polymer insulator dielectric, represented by polyimide, is significantly dependent on temperature; on the other hand, during the charging process the high electric field (at the level of 107 V/m) will enhance the conductivity of the dielectric. Therefore, in order to make a precise assessment of DDC by computer simulation, the conductivity model should take into account the temperature and electric field dependences. In this field, two conductivity models are usually adopted for DDC simulation. One of them is proposed by Adamec. It puts emphasis on the enhanced conductivity due to high electric field, while its temperature dependence is based on the famous Arrhenius formula. Adamec model can make good performance versus electric field, but it is inappropriate in low temperatures. Another model combines the thermally assistant hopping conductivity and the variable-range hopping conductivity together, so it shows advantage in the temperature dependence, which is named as TAH VRH model. Although this model also can include the influence from electric fields, the effectiveness is not so good as that of Adamec model. In order to combine the advantages of these two models, i.e. the Adamec model and TAH VRH model, a new conductivity model is proposed with fewer parameters than those in TAH VRH. It is derived by replacing the Arrhenius formula in Adamec model with a simplified temperature model referred to as TAH VRH model. This formulation enables the new model to deal with a wider temperature range and keep the good performance versus high electric fields. The proposed model is verified partly by the measured data of a kind of polyimide. Satisfactory agreement is obtained in data fitting by using the new model, where the temperature dependence is better than that of Adamec model. In addition, to overcome the unreasonable increase in conductivity in low temperature and high electric field, a useful technique is proposed. By temperature mapping in the electric field correlated factors namely the carrier concentration and mobility enhancement factor, this technique can extend the feasible temperature range to a lower limit. This is done according to the assumption that the carrier concentration is small at low temperatures, and consequently the electric field influence should not be large. At high temperatures or in low electric fields, the temperature mapping is of little effect. Finally, analysis of the model's sensitivity versus several parameters is provided, demonstrating the advantage of applicability of the new model with fewer parameters.
      通信作者: 王松, 735314535@qq.com
    • 基金项目: 国家自然科学基金(批准号: 51577190)资助的课题.
      Corresponding author: Wang Song, 735314535@qq.com
    • Funds: Project supported by the National Natural Science Fundation of China (Grant No. 51577190).
    [1]

    Li G C. Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [2]

    Wrenn G L, Wrenn 1995 Journal of Spacecraft and Rockets 32 514

    [3]

    Han J W, Huang J G, Liu Z, Wang S 2005 Journal of Spacecraft and Rockets 42 1061

    [4]

    Guo X, Guo C W, Chen Y, Su Z P 2014 Chinese physics B 23 076403

    [5]

    Dennison J R, Brunson J 2008 IEEE Transactions on Plasma Science 36 2246

    [6]

    Frederickson A R, Dennison J R 2003 IEEE Transactions on Nuclear Science 50 2284

    [7]

    Frederickson A R, Benson C E, Bockman J F 2003 Nuclear Instruments and Methods Physics Research B 208 454

    [8]

    Rodgers D J, Ryden K A, Latham P M 1998 Engineering tools for internal charging: final report, ESA contract 12115/96/NL/JG(SC), 1998

    [9]

    Rodgers D J, Ryden K A, Wrerm G L 2003 Materials in a Space Environment 540 609

    [10]

    Sorensen J, Rodgers D J 2000 IEEE Transactions on nuclear science 47 491

    [11]

    Jun I, Garrett H B, Kim W 2008 IEEE Transactions on Plasma Science 36 2467

    [12]

    Yi Z, Wang S, Tang X J, Wu Z C 2015 Acta Phys. Sin. 64 125201 (in Chinese) [易忠, 王松, 唐小金, 武占成 2015 物理学报 64 125201]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C 2015 High Voltage engineering 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Transactions on Plasma Science 41 3448

    [15]

    Yi Z, Meng L F, Tang X J, Yuan X X 2007 10th spacecraft charging technology conference

    [16]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [17]

    Wintle H J 1983 Conduction processes in polymers, Engineering Dielectrics Volume IIA Electrical Properties of Solid Insulating Materials: Molecular Structure and Behaviour, pp239-354, R. Bartnikas and R. M. Eichorn, (eds)., ASTM Special Technical Publication 783, ASTM, 1983

    [18]

    Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials, 2 nd ed (Oxford Univ. Press, Oxford, U. K.)

    [19]

    Mott N F 1969 Phil. Mag. 19 835

    [20]

    Amos A T, Crispin R J 1975 J. Chem. Phys. 63 1890

    [21]

    Apsley N, Hughes P H 1975 Philos. Mag. 31 1327

    [22]

    Apsley N, Hughes P H 1974 Philos. Mag. 30 963

    [23]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield a D. January 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-562, Orlando, Florida,

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [25]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.

  • [1]

    Li G C. Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]

    [2]

    Wrenn G L, Wrenn 1995 Journal of Spacecraft and Rockets 32 514

    [3]

    Han J W, Huang J G, Liu Z, Wang S 2005 Journal of Spacecraft and Rockets 42 1061

    [4]

    Guo X, Guo C W, Chen Y, Su Z P 2014 Chinese physics B 23 076403

    [5]

    Dennison J R, Brunson J 2008 IEEE Transactions on Plasma Science 36 2246

    [6]

    Frederickson A R, Dennison J R 2003 IEEE Transactions on Nuclear Science 50 2284

    [7]

    Frederickson A R, Benson C E, Bockman J F 2003 Nuclear Instruments and Methods Physics Research B 208 454

    [8]

    Rodgers D J, Ryden K A, Latham P M 1998 Engineering tools for internal charging: final report, ESA contract 12115/96/NL/JG(SC), 1998

    [9]

    Rodgers D J, Ryden K A, Wrerm G L 2003 Materials in a Space Environment 540 609

    [10]

    Sorensen J, Rodgers D J 2000 IEEE Transactions on nuclear science 47 491

    [11]

    Jun I, Garrett H B, Kim W 2008 IEEE Transactions on Plasma Science 36 2467

    [12]

    Yi Z, Wang S, Tang X J, Wu Z C 2015 Acta Phys. Sin. 64 125201 (in Chinese) [易忠, 王松, 唐小金, 武占成 2015 物理学报 64 125201]

    [13]

    Wang S, Yi Z, Tang X J, Wu Z C 2015 High Voltage engineering 41 687 (in Chinese) [王松, 易忠, 唐小金, 武占成 2015 高电压技术 41 687]

    [14]

    Tang X J, Yi Z, Meng L F, Liu Y N, Zhang C, Huang J G, Wang Z H 2013 IEEE Transactions on Plasma Science 41 3448

    [15]

    Yi Z, Meng L F, Tang X J, Yuan X X 2007 10th spacecraft charging technology conference

    [16]

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]

    [17]

    Wintle H J 1983 Conduction processes in polymers, Engineering Dielectrics Volume IIA Electrical Properties of Solid Insulating Materials: Molecular Structure and Behaviour, pp239-354, R. Bartnikas and R. M. Eichorn, (eds)., ASTM Special Technical Publication 783, ASTM, 1983

    [18]

    Mott N F, Davis E A 1979 Electronic Processes in Non-Crystalline Materials, 2 nd ed (Oxford Univ. Press, Oxford, U. K.)

    [19]

    Mott N F 1969 Phil. Mag. 19 835

    [20]

    Amos A T, Crispin R J 1975 J. Chem. Phys. 63 1890

    [21]

    Apsley N, Hughes P H 1975 Philos. Mag. 31 1327

    [22]

    Apsley N, Hughes P H 1974 Philos. Mag. 30 963

    [23]

    Dennison J R, Sim A, Brunson J, Gillespie J, Hart S, Dekany J, Sim C, Arnfield a D. January 2009 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-562, Orlando, Florida,

    [24]

    Adamec V, Calderwood J H 1975 J. Phys. D: Appl. Phys. 8 551

    [25]

    Minow J I 2007 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada.

  • [1] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展. 物理学报, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [2] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理. 物理学报, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [3] 原青云, 王松. 一种新的航天器外露介质充电模型. 物理学报, 2018, 67(19): 195201. doi: 10.7498/aps.67.20180532
    [4] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [5] 侯堃, 张占文, 黄勇, 韦建军. 气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响. 物理学报, 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
    [6] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [7] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [8] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性. 物理学报, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [9] 李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜. 高能电子辐射下聚四氟乙烯深层充电特性. 物理学报, 2014, 63(20): 209401. doi: 10.7498/aps.63.209401
    [10] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [11] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响. 物理学报, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [12] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [13] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [14] 秦晓刚, 贺德衍, 王骥. 基于Geant 4的介质深层充电电场计算. 物理学报, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [15] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [16] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [17] 黄建国, 陈 东. 不同接地方式的卫星介质深层充电研究. 物理学报, 2004, 53(5): 1611-1616. doi: 10.7498/aps.53.1611
    [18] 李雪春, 王友年. 介质靶表面的充电效应对等离子体浸没离子注入过程中鞘层特性的影响. 物理学报, 2004, 53(8): 2666-2669. doi: 10.7498/aps.53.2666
    [19] 黄建国, 陈 东. 卫星中介质深层充电特征研究. 物理学报, 2004, 53(3): 961-966. doi: 10.7498/aps.53.961
    [20] 包科达. 含椭球包体多相复合介质电导率的有效介质理论. 物理学报, 1992, 41(5): 833-840. doi: 10.7498/aps.41.833
计量
  • 文章访问数:  6875
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-08
  • 修回日期:  2015-09-23
  • 刊出日期:  2016-01-20

/

返回文章
返回