搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用Kagome光纤实现多芯光子晶体光纤的输出合束

周雨竹 黄莉莉 柴路 王清月 胡明列

引用本文:
Citation:

利用Kagome光纤实现多芯光子晶体光纤的输出合束

周雨竹, 黄莉莉, 柴路, 王清月, 胡明列

The beam combination of multi-core photonic crystal fiber by using the Kagome fiber

Zhou Yu-Zhu, Huang Li-li, Chai Lu, Wang Qing-Yue, Hu Ming-Lie
PDF
导出引用
  • 多芯光纤的输出光束只能在远场和焦点附近实现良好的同相位超模合束, 这种超模传输特性大大影响了多芯光纤的应用范围. 一种新型中空Kagome光纤为解决这一难题提供了可行的方案, 利用中空Kagome光纤可以实现七芯光纤输出模式的整形合束. 本文利用中心波长800 nm的钛宝石飞秒激光作为激光源, 耦合入七芯非线性光子晶体光纤, 得到700 nm至1050 nm的展宽光谱, 并实现同相位超模输出. 随后, 将非线性展宽之后的宽谱七芯光束耦合至Kagome光子晶体光纤中, 从Kagome 光纤输出光斑呈高斯分布的模式传输, 不再演变回七芯模式, 耦合效率71%. 实验还进一步验证此方法适用于不同结构的多芯光纤, 为多芯光纤在高功率激光等领域的应用提供了参考.
    Using multi-core photonic crystal fiber (PCF) has advantages of large-mode-area that can support high beam intensity and disperse heat. However, only when the beam profile in far-field and the focal point of in-phase super mode is Gaussian-shaped, the energy can be more concentrated as compared with other shapes. And this beam profile feature limits the applications of multi-core PCF.With the development of optics, there is a practical solution to improve the beam profile of multi-core PCF in which a Kagome fiber is used. This solution is to couple the in-phase super mode source (obtained from multi-core PCF) into Kagome fiber to achieve the beam combination of multi-core photonic crystal fiber, i. e. the beam profile remains to be Gaussian-shaped at any location in the optical field. The Kagome fibers have a novel hollow structure and thus will show some new properties, such as broad optical transmission bands with relatively low loss, no detectable surface modes, and high confinement of light at the core, and these features are suitable for beam combination.In this paper, a Ti: sapphire femtosecond pulsed fiber oscillator, with its center wavelength of 800 nm and output power of 550 mW, is used to pump a piece of seven-core nonlinear PCF, with an efficiency of 19%. EFL of the coupling lens is 18.40 mm and the NA is 0.15. Then the in-phase super mode source can be obtained from the 15 m multi-core PCF, with a broadband spectrum from 700 to 1050 nm. The beam profile of farfield and the focal point of in-phase super mode is Gaussian-shaped and there is a seven-core-shaped pattern at nearfield and other locations in the optical field. In order to combine the beams of multi-core fiber, the in-phase super mode source is coupled into a piece of Kagome fiber, 10 cm long, by using the coupling lens whose EFL is 13.86 mm. Its coupling efficiency is 71% and the output beam profile remains to be Gaussian-shaped at any locations in the optical field; this means that there is no seven-core-shaped pattern. It also transmits broadband spectrum with low loss. Moreover, this experiment also proves that the solution can be used for different multi-core PCFs and can have a higher coupling efficiency, 80%. Thus a reference can be given for high power applications of multi-core PCF, and inspiration may be given to some other frontier fields in fiber optics.
      通信作者: 胡明列, huminglie@tju.cdu.cn
    • 基金项目: 国家自然科学基金(批准号: 61322502, 61535009, 1127423)和教育部长江学者创新团队(批准号: IRT13033)资助的课题.
      Corresponding author: Hu Ming-Lie, huminglie@tju.cdu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61322502, 61535009, 11274239) and the Program for Changjiang Scholars and Innovative Research Team in Universities, China (Grant No. IRT13033).
    [1]

    Wang Q Y, Hu M L, Chai L 2006 Chin. J. Lasers 33 57 (in Chinese) [王清月, 胡明列, 柴路 2006 中国激光 33 57]

    [2]

    Fang X H, Wang Q Y, Liu J J, Liu B W, Li Y F, Chai L, Hu M L 2010 Chin. J. Lasers 06 1585 (in Chinese) [方晓惠, 王清月, 刘俊杰, 刘博文, 栗岩锋, 柴路, 胡明列 2010 中国激光 06 1585]

    [3]

    Chen H W, Jin A J, Chen S P, Hou J, Lu Q S 2013 Chin. Phys. B 22 084205

    [4]

    Song R, Hou J, Chen S P, Yang W Q, Lu Q S 2012 Chin. Phys. B 21 094211

    [5]

    Dudley J M, Genty G, Coen S 2006 Mod. Phys. Rev. 78 1135

    [6]

    Liu W H, Song X Z, Wang Q S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Vysotsky D V, Napartovich A P 2000 Opt. Lett. 25 1436

    [8]

    Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M, Wang C Y 2012 Opt. Lett. 37 2292

    [9]

    Zhan H W, Wei H F, Liu T, Zhou X F, Li J, Tong W J, Chen Z L, Chen S P, Hou J, Lu Q S 2014 Acta Phys. Sin. 63 044205 (in Chinese) [谌鸿伟, 韦会峰, 刘通, 周旋风, 李江, 童维军, 陈子伦, 陈胜平, 侯静, 陆启生 2014 物理学报 63 044205]

    [10]

    Fang X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [方晓惠 2010 博士学位论文 天津: 天津大学]

    [11]

    Hu M L, Wang Q Y 2013 The 10th National Conference on Optoelectronic Technology Beijing, 2012, 6-12, 49-49 (in Chinese) [胡明列,王清月 2013 第10届全国光电技术学术交流会 北京, 2012, 6-12, 49-49]

    [12]

    Huang L L, Fang X H, Cui Y L, Hu M L, Wang Q Y 2014 Acta Phys. Sin. 63 014204 (in Chinese) [黄莉莉, 方晓惠, 崔元玲, 胡明列, 王清月 2014 物理学报 63 014204]

    [13]

    Bo L, Zhou G Y, Xia C M, Liu H Z, Hou Z Y 2014 Opt. Eng. 53 688

    [14]

    Zhou X F, Chen Z L, Zhou H, Hou J 2014 J. Lightwave Technol. 32 3970

    [15]

    Couny F, Benabid F, Light P S 2006 Opt. Lett. 3l 3574

    [16]

    Wang Y Y, Wheeler N V, Couny F, Roberts P J, Benabid F 2011 Opt. Lett. 36 669

    [17]

    Shen H 2013 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [沈贺 2013 硕士学位论文 天津: 南开大学]

    [18]

    Russell P St J, Hlzer P, Chang W, Abdolvand A, Travers J C 2014 Nature Photon. 8 278

    [19]

    Jiang W X, Tan X L, Zhou J 2011 High Power Laser Part. Beams 23 2578 (in Chinese) [蒋文晓, 谭晓玲, 周骏 2011 强激光与粒子束 23 2578]

  • [1]

    Wang Q Y, Hu M L, Chai L 2006 Chin. J. Lasers 33 57 (in Chinese) [王清月, 胡明列, 柴路 2006 中国激光 33 57]

    [2]

    Fang X H, Wang Q Y, Liu J J, Liu B W, Li Y F, Chai L, Hu M L 2010 Chin. J. Lasers 06 1585 (in Chinese) [方晓惠, 王清月, 刘俊杰, 刘博文, 栗岩锋, 柴路, 胡明列 2010 中国激光 06 1585]

    [3]

    Chen H W, Jin A J, Chen S P, Hou J, Lu Q S 2013 Chin. Phys. B 22 084205

    [4]

    Song R, Hou J, Chen S P, Yang W Q, Lu Q S 2012 Chin. Phys. B 21 094211

    [5]

    Dudley J M, Genty G, Coen S 2006 Mod. Phys. Rev. 78 1135

    [6]

    Liu W H, Song X Z, Wang Q S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [7]

    Wrage M, Glas P, Fischer D, Leitner M, Vysotsky D V, Napartovich A P 2000 Opt. Lett. 25 1436

    [8]

    Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M, Wang C Y 2012 Opt. Lett. 37 2292

    [9]

    Zhan H W, Wei H F, Liu T, Zhou X F, Li J, Tong W J, Chen Z L, Chen S P, Hou J, Lu Q S 2014 Acta Phys. Sin. 63 044205 (in Chinese) [谌鸿伟, 韦会峰, 刘通, 周旋风, 李江, 童维军, 陈子伦, 陈胜平, 侯静, 陆启生 2014 物理学报 63 044205]

    [10]

    Fang X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [方晓惠 2010 博士学位论文 天津: 天津大学]

    [11]

    Hu M L, Wang Q Y 2013 The 10th National Conference on Optoelectronic Technology Beijing, 2012, 6-12, 49-49 (in Chinese) [胡明列,王清月 2013 第10届全国光电技术学术交流会 北京, 2012, 6-12, 49-49]

    [12]

    Huang L L, Fang X H, Cui Y L, Hu M L, Wang Q Y 2014 Acta Phys. Sin. 63 014204 (in Chinese) [黄莉莉, 方晓惠, 崔元玲, 胡明列, 王清月 2014 物理学报 63 014204]

    [13]

    Bo L, Zhou G Y, Xia C M, Liu H Z, Hou Z Y 2014 Opt. Eng. 53 688

    [14]

    Zhou X F, Chen Z L, Zhou H, Hou J 2014 J. Lightwave Technol. 32 3970

    [15]

    Couny F, Benabid F, Light P S 2006 Opt. Lett. 3l 3574

    [16]

    Wang Y Y, Wheeler N V, Couny F, Roberts P J, Benabid F 2011 Opt. Lett. 36 669

    [17]

    Shen H 2013 M. S. Dissertation (Tianjin: Nankai University) (in Chinese) [沈贺 2013 硕士学位论文 天津: 南开大学]

    [18]

    Russell P St J, Hlzer P, Chang W, Abdolvand A, Travers J C 2014 Nature Photon. 8 278

    [19]

    Jiang W X, Tan X L, Zhou J 2011 High Power Laser Part. Beams 23 2578 (in Chinese) [蒋文晓, 谭晓玲, 周骏 2011 强激光与粒子束 23 2578]

  • [1] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成. 物理学报, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [2] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [3] 谌鸿伟, 韦会峰, 刘通, 周旋风, 李江, 童维军, 陈子伦, 陈胜平, 侯静, 陆启生. 七芯光子晶体光纤中百瓦量级超连续谱的产生. 物理学报, 2014, 63(4): 044205. doi: 10.7498/aps.63.044205
    [4] 黄莉莉, 方晓惠, 崔元玲, 胡明列, 王清月. 多芯光子晶体光纤优化掺杂分布实现同相位超模输出. 物理学报, 2014, 63(1): 014204. doi: 10.7498/aps.63.014204
    [5] 王鑫, 娄淑琴, 鹿文亮. 新型三角芯抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(18): 184215. doi: 10.7498/aps.62.184215
    [6] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [7] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究. 物理学报, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [9] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [10] 孙桂林, 陈子伦, 奚小明, 谌鸿伟, 侯静, 姜宗福. 光子晶体光纤的全光纤纤芯变形研究. 物理学报, 2011, 60(8): 084220. doi: 10.7498/aps.60.084220
    [11] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [12] 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰. 微结构纤芯对光子晶体光纤基本特性的影响. 物理学报, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [13] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [14] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, 2010, 59(10): 7091-7095. doi: 10.7498/aps.59.7091
    [15] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [16] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [17] 方晓惠, 柴路, 胡明列, 栗岩锋, 王清月. 七芯光子晶体光纤结构优化的数值分析. 物理学报, 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [18] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟. 物理学报, 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [19] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [20] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
计量
  • 文章访问数:  5394
  • PDF下载量:  664
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-16
  • 修回日期:  2015-10-09
  • 刊出日期:  2016-01-20

/

返回文章
返回