搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al-2N掺杂量对ZnO光电性能的影响

侯清玉 曲灵丰 赵春旺

引用本文:
Citation:

Al-2N掺杂量对ZnO光电性能的影响

侯清玉, 曲灵丰, 赵春旺

Effects of Al-2N doping on the photoelectric properties of ZnO

Hou Qing-Yu, Qu Ling-Feng, Zhao Chun-Wang
PDF
导出引用
  • 与本文相近的Al-2N掺杂量的范围内, 对ZnO掺杂体系吸收光谱分布红移和蓝移两种实验结果均有文献报道, 但是, 迄今为止对吸收光谱分布尚未有合理的理论解释. 为了解决该问题, 本文采用基于密度泛函理论的广义梯度近似 平面波超软赝势方法, 用第一性原理构建了两种不同掺杂量的Zn0.98148Al0.01852O0.96296N0.03704和Zn0.96875Al0.03125O0.9375N0.0625超胞模型. 在几何结构优化的基础上, 对模型能带结构分布、态密度分布和吸收光谱分布进行了计算. 计算结果表明, 在本文限定的掺杂量范围内, Al-2N掺杂量越增加, 掺杂体系的体积越减小, 体系总能量越升高, 体系稳定性越下降, 形成能越升高, 掺杂越难; 所有掺杂体系均转化为简并p型化半导体, 掺杂体系最小光学带隙均变窄,吸收光谱均发生红移; 同时发现掺杂量越增加, 掺杂体系最小光学带隙变窄越减弱, 吸收光谱红移越减弱. 研究表明: 要想实现Al-2N共掺在ZnO中最小光学带隙变窄、掺杂体系发生红移现象, 除了限制掺杂量外, 尺度长短也应限制; 其次, Al-2N掺杂量越增加,掺杂体系空穴的有效质量、浓度、 迁移率、电导率越减小,掺杂体系导电性能越减弱. 计算结果与实验结果的变化趋势相符合. 研究表明, Al-2N共掺在ZnO中获得的新型半导体材料可以用作低温端的温差发电功能材料.
    In a similar range of Al-2N doping amount to that in the present paper, the absorption spectra of ZnO doped system and two kinds of experimental results have been reported in the literature. However, there is no reasonable explanation for the absorption spectra of ZnO doped system. In order to solve the problem, all calculations in the present paper are carried out by the CASTEP tool in the Materials Studio software based on the first principal ultrasoft pseudopotential of the density functional theory, and the geometric structures of ZnO, Zn0.98148Al0.01852O0.96296N0.03704 and Zn0.96875Al0.03125O0.9375N0.0625 systems are constructed by first-principal. All the models are based on the optimization of the geometry structure. And the distribution of the band structure, the density of states and the absorption spectra of the doping system are calculated by the method of GGA+U. The results indicate that in the range of the doping content restricted in the present paper, the bigger the doping amount of Al-2N, the smaller the volume of doped system is; the higher the total energy, the more the stability decreases; the higher the formation energy, the harder the doping becomes and the narrower the optical band gap of doped system. Meanwhile, the higher the Al-2N doping content, the narrower the optical bandgap of the doping system becomes, which suggests that the more significant the red shift of absorption spectrum of Al-2N doped ZnO system is. Therefore, the doped system is controlled within the doping content in experiment to obtain the narrow optical band gap and red shift in absorption spectrum in Al-2N doped ZnO, in addition to the control of lower nanoscale of Al-2N doped in ZnO. At the same time, all doping systems are p-type degenerated semiconductors. Then, the higher the Al-2N doping content, the smaller the relative concentration of free holes of doped system is; the smaller the hole effective mass, the lower the mobility is; the lower the hole conductivity, the worse the conductive property of doping system is. The calculated results are in agreement with the experimental results. The research shows that Al-2N co-doped ZnO can be a new type of semiconductor material, a functional material which is used at low temperature end of thermoelectric power generation.
      通信作者: 侯清玉, by050119@126.com
    • 基金项目: 国家自然科学基金(批准号: 61366008, 11272142)、教育部春晖计划内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
      Corresponding author: Hou Qing-Yu, by050119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 11272142), the Spring Sunshine Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Kalyanaraman S, Thangavel R, Vettumperumal R 2013 J. Phys. Chem. Solid 74 504

    [4]

    Shet S, Ahn K S, Deutsch T, Wang H, Ravindra N, Yan Y, Turner J, Jassim M A 2010 J. Mater. Res. 25 69

    [5]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [6]

    Zhuge F, Zhu L P, Ye Z Z, Lu J G, Zhao B H, Huang J Y, Wang L, Zhang Z H, Ji Z G 2005 Thin Solid Films 476 272

    [7]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [8]

    Lahmer M A, Guergouri K 2015 Mat. Sci. Semicon. Proc. 39 148

    [9]

    Li H L, Lv Y B, Li J Z, Yu K 2014 Mat. Sci. Semicon. Proc. 27 599

    [10]

    Yang P, ZhaoY F, Yang H Y 2015 Ceram. Int. 41 2446

    [11]

    Li P, Deng S H, Li Y B, Huang J, Liu G H, Zhang L 2011 Physica B 406 3125

    [12]

    Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]

    [13]

    You Q H, Hua C, Hu Z G, Liang P P, Prucnal S, Zhou S Q, Sun J, Xu N, Wu J D 2015 J. Alloy. Compd. 644 528

    [14]

    Lu H C, Lu J L, Lai C Y, Wu G M 2009 Physica B 404 4846

    [15]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [16]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [17]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [18]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [20]

    Benramache S, Belahssen O, Arif A, Guettaf A 2014 Optik 125 1303

    [21]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 106

  • [1]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [2]

    Li Z X, Rong Z 2015 Chin. Phys. B 24 107703

    [3]

    Kalyanaraman S, Thangavel R, Vettumperumal R 2013 J. Phys. Chem. Solid 74 504

    [4]

    Shet S, Ahn K S, Deutsch T, Wang H, Ravindra N, Yan Y, Turner J, Jassim M A 2010 J. Mater. Res. 25 69

    [5]

    Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloy. Compd. 580 538

    [6]

    Zhuge F, Zhu L P, Ye Z Z, Lu J G, Zhao B H, Huang J Y, Wang L, Zhang Z H, Ji Z G 2005 Thin Solid Films 476 272

    [7]

    Bhuvana K P, Elanchezhiyan J, Gopalakrishnan N, Balasubramanian T 2008 Appl. Surf. Sci. 255 2026

    [8]

    Lahmer M A, Guergouri K 2015 Mat. Sci. Semicon. Proc. 39 148

    [9]

    Li H L, Lv Y B, Li J Z, Yu K 2014 Mat. Sci. Semicon. Proc. 27 599

    [10]

    Yang P, ZhaoY F, Yang H Y 2015 Ceram. Int. 41 2446

    [11]

    Li P, Deng S H, Li Y B, Huang J, Liu G H, Zhang L 2011 Physica B 406 3125

    [12]

    Gao X Q, Guo Z Y, Zhang Y F, Cao D X 2010 J. Lumin. 31 509 (in Chinese) [高小奇, 郭志友, 张宇飞, 曹东兴 2010 发光学报 31 509]

    [13]

    You Q H, Hua C, Hu Z G, Liang P P, Prucnal S, Zhou S Q, Sun J, Xu N, Wu J D 2015 J. Alloy. Compd. 644 528

    [14]

    Lu H C, Lu J L, Lai C Y, Wu G M 2009 Physica B 404 4846

    [15]

    Mapa M, Thushara K S, Saha B, Chakraborty P, Janet C M, Viswanath R P, Nair C M, Murty K V G K, Gopinath C S 2009 Chem. Mater. 21 2973

    [16]

    Li M, Zhang J Y, Zhang Y 2012 Chem. Phys. Lett. 527 63

    [17]

    Na P S, Smith M F, Kim K, Du M H, Wei S H, Zhang S B, Limpijumnong S 2006 Phys. Rev. B 73 125205

    [18]

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520 (in Chinese) [段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520]

    [19]

    Yamamoto T, Yoshida H K 1999 Jpn. J. Appl. Phys. 38 L166

    [20]

    Benramache S, Belahssen O, Arif A, Guettaf A 2014 Optik 125 1303

    [21]

    Roth A P, Webb J B, Williams D F 1981 Solid State Commun. 39 1269

    [22]

    Pires R G, Dickstein R M, Titcomb S L 1990 Cryogenics 30 106

计量
  • 文章访问数:  4983
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2015-12-17
  • 刊出日期:  2016-03-05

/

返回文章
返回