搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光照射对6H-SiC晶体电子特性的影响

邓发明

引用本文:
Citation:

强激光照射对6H-SiC晶体电子特性的影响

邓发明

Effect of intense laser irradiation on the electronic properties of 6H-SiC

Deng Fa-Ming
PDF
导出引用
  • 使用基于密度泛函微扰理论的第一性原理赝势法, 模拟研究了纤锌矿6H-SiC晶体在强激光照射下电子特性的变化. 研究结果表明, 电子温度Te在升高到3.89 eV及以上后, 6H-SiC由间接带隙的晶体变为直接带隙的晶体; 带隙值随电子温度Te升高先是增大后又快速减小, 当电子温度Te大于4.25 eV以后, 带隙已经消失而呈现出金属特性.
    By using first-principle with pseudopotential method based on the density functional perturbation theory, in this paper we calculate the electronic properties of wurtzite 6H-SiC crystal under the strong laser irradiation and analyze the band structure and the density of states. Calculations are performed in the ABINIT code with using the generalized gradient approximation for the exchange-correlation energy. And the input variable tphysel is used to set up a physical temperature of electrons Te. The value of Te is set to simulate the corresponding electron temperature of the crystal when irradiated by intensive laser within an ultrafast time. The highly symmetric points selected in the Brillouin zone are along -A-H-K--M-L-H in the energy band calculations. After testing, we can always obtain a good convergence of the total energy when choosing 18 Hartree cut-off energy and 333 k-point grid. By optimizing the structure and then using the optimized equilibrium lattice constant, the structural parameters and the corresponding electronic properties of 6H-SiC in the different electron-temperature conditions are studied. First of all, when the electron temperature stays in a range between 0 eV and 5.0 eV, we choose 23 groups of different electron temperatures to respectively test the values of equilibrium lattice parameters a and c of 6H-SiC. Within a temperature range between 0 eV and 4.25 eV, we continue to test 20 groups of the electrical properties of 6H-SiC under different electron temperatures, calculating the forbidden bandwidths at different electron temperatures and analyzing the changes of the bottom of conduction band and the top of valence band as the electron temperature goes up. Meanwhile, taking for sample two groups of the band structures in ranges of 0-2 eV and 3-4 eV, we comparatively analyze the changes of the energy and position of the bottom of conduction band and the top of valence band with electron temperature. The calculation results indicate that the equilibrium lattice parameters a and c of 6H-SiC gradually increase as electron temperature Te goes up. With the electron temperature going up, the top of valence band still stays there, while the bottom of conduction band shifts to the location between M and L point as electron temperature increases, leading to the fact that 6H-SiC is still an indirect band-gap semiconductor in a range of 0-3.87 eV, and as electron temperature reaches 3.89 eV and even more, the crystal turns into a direct band-gap semiconductor. With Te rising constantly, the bottom of the conduction band and the top of valence band both move in the direction of high energy or low energy. When Te is in excess of 4.25 eV, the top of valence band crosses the Fermi level. When Te varies in a range of 0-2.75 eV, the forbidden bandwidth increases with temperature rising, and when Te varies in a range of 2.75-3 eV, the forbidden bandwidth decreases slowly, and when Te varies in a range of 3-4.25 eV, the forbidden bandwidth quickly reduces. This variation shows that the metallic character of 6H-SiC crystal increases with electron temperature Te rising. The total densities of states (DOS) are calculated at Te = 0 eV and 5 eV. The DOS figures indicate that 6H-SiC is a semiconductor and its energy gap equals 2.1 eV. At Te = 5 eV, the gap disappears, presenting metallic properties. This result shows that the crystal covalent bonds are weakened and metallic bonds are enhanced with temperature increasing and the crystal experiences the process of melting, entering into metallic state.
      通信作者: 邓发明, dfm@scun.edu.cn
    • 基金项目: 国家科技部支撑计划(批准号:2014GB111001,2014GB125000)和四川省教育厅自然科学项目(批准号:16ZA0363)资助的课题.
      Corresponding author: Deng Fa-Ming, dfm@scun.edu.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant Nos. 2014GB111001, 2014GB125000) and the Natural Science Foundation of the Education Department of Sichuan Province, China (Grant No. 16ZA0363).
    [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [9]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [10]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [11]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589

    [14]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [15]

    Weitzel C E 1998 Mater. Sci. Formum. 907 264

    [16]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [17]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330

    [18]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [19]

    Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]

    [20]

    Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]

    [21]

    Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]

    [22]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [23]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [24]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [25]

    Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037

    [26]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [27]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [28]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [29]

    Wessels B W, Gatos H C 1977 Phys. Solids 38 345

    [30]

    Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284

    [31]

    Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101

    [32]

    Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186

  • [1]

    van Vechten J A, Tsu R, Saris F W 1979 Phys. Lett. A 74 422

    [2]

    Shank C V, Yen R, Hirlimann C 1983 Phys. Rev. Lett. 50 454

    [3]

    Saeta P, Wang J, Siegal Y, Bloembergen N, Mazur E 1991 Phys. Rev. Lett. 67 1023

    [4]

    Larsson J, Heimann P A, Lindenberg A M, Schuck P J, Bucksbaum P H, Lee R W, Padmore H A, Wark J S, Falcone R W 1998 Appl. Phys. A: Mater. Sci. Proc. 66 587

    [5]

    Uteza O P, Gamaly E G, Rode A V, Samoc M, Luther-Davies B 2004 Phys. Rev. B 70 054108

    [6]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1997 Phys. Rev. B 56 3806

    [7]

    Silvestrelli P L, Alavi A, Parrinello M, Frenkel D 1996 Phys. Rev. Lett. 7 3149

    [8]

    Wang M M, Gao T, Yu Y, Zeng X W 2012 Eur. Phys. J. Appl. Phys. 57 10104

    [9]

    Deng F M, Gao T, Shen Y H, Gong Y R 2015 Acta Phys. Sin. 64 046301 (in Chinese) [邓发明, 高涛, 沈艳红, 龚艳蓉 2015 物理学报 64 046301]

    [10]

    Recoules V, Clrouin J, Zrah G, Anglade P M, Mazevet S 2006 Phys. Rev. Lett. 96 055503

    [11]

    Zijlstra E S, Walkenhorst J, Gilfert C, Sippel C, Tws W, Garcia M E 2008 Appl. Phys. B 93 743

    [12]

    Shen Y H, Gao T, Wang M M 2013 Comput. Mater. Sci. 77 372

    [13]

    Shen Y H, Gao T, Wang M M 2013 Commun. Theor. Phys. Sci. 59 589

    [14]

    Matsunami H 2006 Microelectron. Eng. 83 2

    [15]

    Weitzel C E 1998 Mater. Sci. Formum. 907 264

    [16]

    Costa A K, Camargo Jr S S 2003 Surf. Coat. Technol. 163 176

    [17]

    Rottner K, Frischholz M, Myrtveit T, Mou D, Nordgren K, Henry A, Hallin C, Gustafsson U, Schoner A 1999 Mat. Sci. Eng. 61 330

    [18]

    Jiang Z Y, Xu X H, Wu H S, Zhang F Q, Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese) [姜振益, 许小红, 武海顺, 张富强, 金志浩 2002 物理学报 51 1586]

    [19]

    Wu X J, Jia T Q, Zhao F L, Huang M, Chen H X, Xu N S, Xu Z Z 2007 Acta Optica Sinica 27 0105 (in Chinese) [吴晓君,贾天卿,赵福利,黄敏,陈洪新,许宁生, 徐至展2007 光学学报 27 0105]

    [20]

    Wang S R, Liu Z L, Li J M, Wang L C, Xu P 2001 Chinese Journal of Semiconductors 22 507 (in Chinese) [王姝睿, 刘忠立, 李晋闽, 王良臣, 徐萍 2001 半导体学报 22 507]

    [21]

    Wang S R, Liu Z L, Liang G R, Liang X Q, Ma H Z 2001 Chinese Journal of Semiconductors 22 0755 (in Chinese) [王姝睿, 刘忠立, 梁桂荣, 梁秀芹, 马红芝 2001 半导体学报 22 0755]

    [22]

    Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478

    [23]

    Troullier N, Martins J L 1990 Solid State Commun. 74 613

    [24]

    Camp P E, Doren V, Devreese J T 1986 Phys. Rev. B 34 1314

    [25]

    Kckell P, Wenzien B, Bechstedt F 1994 Phys. Rev. B 50 17037

    [26]

    Feng S Q, Zhao J L, Cheng X L 2013 J. Appl. Phys. 113 023301

    [27]

    Thompson M O, Galvin G J, Mayer J W, Peercy P S, Poate J M, Jacobson D C, Cullis A G, Chew N G 1984 Phys. Rev. Lett. 52 2360

    [28]

    Poate J M, Brown W L 1982 Phys. Today 35 24

    [29]

    Wessels B W, Gatos H C 1977 Phys. Solids 38 345

    [30]

    Xie C K, Xu P S, Xu F Q 2003 Phys. B 336 284

    [31]

    Gromov G G, Kapaev V V, Kopaev Y V, Kopaev Y V, Rudenko K V 1988 Zh. Eksp. Teor. Fiz. 94 101

    [32]

    Sokolowski-Tinten K, Bialkowski J, von der Linde D 1995 Phys. Rev. B 51 14186

  • [1] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [2] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [3] 徐永虎, 邓小清, 孙琳, 范志强, 张振华. 边修饰Net-Y纳米带的电子结构及机械开关特性的应变调控效应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211748
    [4] 张华林, 何鑫, 张振华. 过渡金属原子掺杂的锯齿型磷烯纳米带的磁电子学特性. 物理学报, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] 刘雅楠, 路俊哲, 祝恒江, 唐宇超, 林响, 刘晶, 王婷. 锯齿型碳纳米管的结构衍生及电子特性. 物理学报, 2017, 66(9): 093601. doi: 10.7498/aps.66.093601
    [7] 邓发明, 高涛, 沈艳红, 龚艳蓉. 强激光辐照对3C-SiC晶体结构稳定性的影响. 物理学报, 2015, 64(4): 046301. doi: 10.7498/aps.64.046301
    [8] 邓发明. 强激光照射对2H-SiC晶体电子特性的影响. 物理学报, 2015, 64(22): 227101. doi: 10.7498/aps.64.227101
    [9] 杜洋洋, 李炳生, 王志光, 孙建荣, 姚存峰, 常海龙, 庞立龙, 朱亚滨, 崔明焕, 张宏鹏, 李远飞, 王霁, 朱卉平, 宋鹏, 王栋. He离子辐照6H-SiC引入缺陷的光谱研究. 物理学报, 2014, 63(21): 216101. doi: 10.7498/aps.63.216101
    [10] 曾永昌, 田文, 张振华. 周期性纳米洞内边缘氧饱和石墨烯纳米带的电子特性. 物理学报, 2013, 62(23): 236102. doi: 10.7498/aps.62.236102
    [11] 李骏, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带卷曲效应对其电子特性的影响. 物理学报, 2013, 62(5): 056103. doi: 10.7498/aps.62.056103
    [12] 云志强, 魏汝省, 李威, 罗维维, 吴强, 徐现刚, 张心正. 6H-SiC的飞秒激光超衍射加工. 物理学报, 2013, 62(6): 068101. doi: 10.7498/aps.62.068101
    [13] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [14] 秦希峰, 王凤翔, 梁毅, 付刚, 赵优美. 铒离子注入6H-SiC的横向离散研究. 物理学报, 2010, 59(9): 6390-6393. doi: 10.7498/aps.59.6390
    [15] 张洪华, 张崇宏, 李炳生, 周丽宏, 杨义涛, 付云翀. 碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究. 物理学报, 2009, 58(5): 3302-3308. doi: 10.7498/aps.58.3302
    [16] 刘世荣, 黄伟其, 秦朝建. 氧化硅层中的锗纳米晶体团簇量子点. 物理学报, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [17] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] 周拥华, 张义门, 张玉明, 孟祥志. 6H-SiC pn结紫外光探测器的模拟与分析. 物理学报, 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
    [19] 尚也淳, 张义门, 张玉明. SiC/SiO2界面粗糙散射对沟道迁移率影响的Monte Carlo研究. 物理学报, 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  5042
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-16
  • 修回日期:  2016-02-15
  • 刊出日期:  2016-05-05

/

返回文章
返回