搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究

吴宇昊 王伟丽 魏炳波

引用本文:
Citation:

液态三元Fe-Sn-Si/Ge偏晶合金相分离过程的实验和模拟研究

吴宇昊, 王伟丽, 魏炳波

Experimental investigation and numerical simulation on liquid phase separation of ternary Fe-Sn-Si/Ge monotectic alloy

Wu Yu-Hao, Wang Wei-Li, Wei Bing-Bo
PDF
导出引用
  • 本文采用自由落体实验技术和格子玻尔兹曼计算方法研究了低重力条件下液态Fe-Sn-Si/Ge合金的相分离过程. 实验发现, 二种合金液滴在自由下落过程中均发生显著的液相分离, 形成了壳核和弥散组织. 当Fe-Sn-Si合金中的Si元素被等量的Ge元素替换后, 壳核组织中富Fe区和富Sn区的分布次序会发生反转. 计算表明, 在液相分离过程中冷却速率、Marangoni对流和表面偏析对壳核构型的选择和弥散组织的形成起决定性作用.
    The liquid phase separation of small Fe-Sn-Si/Ge alloy droplets under reduced-gravity condition is investigated experimentally by free fall technique and theoretically by lattice Boltzmann method. In the drop tube experiments, the Fe-Sn-Si/Ge monotectic alloys are heated by induction heating in an ultrahigh vacuum chamber and further overheated to 200 K above their liquid temperatures for a few seconds. Finally, the molten alloy melt is ejected out from the small orifice of a quartz tube by high pressure jetting gas of He and dispersed into numerous tiny droplets, which are rapidly solidified during free fall in a protecting He gas environment. These droplets benefit from the combined advantages of high undercooling, containerless state and rapid cooling, which can provide an efficient way to study the liquid phase separation of high-temperature alloys in microgravity. In order to efficiently reproduce the dynamic process of phase separation inside drop tube equipment, the effects of surface segregation and Marangoni convection are introduced into the interaction potential of different liquids within lattice Boltzmann theory. Based on this modified model, the dynamic mechanism of phase separation can be sufficiently analyzed and the phase separation patterns can be realistically simulated. Experimental results demonstrate that conspicuous liquid phase separations have taken place for both Fe-Sn-Si and Fe-Sn-Ge alloy droplets and the corresponding morphologies are mainly characterized by core-shell and dispersed structures. The phase separation process can be modulated by the third-element addition. As the Si element of Fe-Sn-Si alloy is replaced by the Ge element with the same fraction, the distribution order of Fe-rich and Sn-rich zones is reversed within core-shell structure. A core-shell structure composed of a Fe-rich core and a Sn-rich shell is frequently observed in Fe-Sn-Si alloy droplets whereas the Fe-Sn-Ge alloy droplets tend to form a core-shell structure consisting of a Sn-rich core and a Fe-rich shell. Theoretical calculations show that the droplet cooling rate is closely related to droplet size: a smaller alloy droplet has a higher cooling rate. The liquid L2(Sn) phase always nucleates preferentially and forms tiny globules prior to solid Fe phase. Stokes motion can be greatly weakened in this experiment and the Marangoni migration dominates the globule movement in the process of liquid phase separation. Furthermore, the intensity of Marangoni convection within Fe-Sn-Ge alloy droplets is significantly stronger than that inside Fe-Sn-Si alloy droplets. Numerical simulations reveal that the cooling rate, Marangoni convection and surface segregation play the important roles in determining the selection of core-shell configurations and the formation of dispersed structures. Ultrahigh cooling rate contributes to forming the dispersed structures. When the Marangoni convection proceeds more drastically than the surface segregation, the minor liquid phase with a smaller surface free energy migrates to droplet center and occupies the interior of droplet, otherwise most of the minor phases appear around the periphery of droplet.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51271150,51371150,51571163,51327901)资助的课题.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51571163, 51327901).
    [1]

    Delfino G, Squarcini A 2014 Phys. Rev. Lett. 113 066101

    [2]

    Cui L M, Li J, Zhang Y, Zhao L, Deng H, Huang K Q, Li H K, Zheng D N 2014 Chin. Phys. B 23 098501

    [3]

    Sabin J, Bailey A E, Espinosa G, Frisken B J 2012 Phys. Rev. Lett. 109 195701

    [4]

    Prisk T R, Pantalei C, Kaiser H, Sokol P E 2012 Phys. Rev. Lett. 109 075301

    [5]

    Wu Y H, Wang W L, Wei B 2015 Comp. Mater. Sci. 103 179

    [6]

    Patel A J, Rappl T J, Balsara N P 2011 Phys. Rev. Lett. 106 035702

    [7]

    Zhang X M, Wang W L, Ruan Y, Wei B 2010 Chin. Phys. Lett. 27 026401

    [8]

    Takahashi Y, Yamaoka K, Yamazaki Y, Miyazaki T, Fujiwara T 2013 Appl. Phys. Lett. 103 071909

    [9]

    Roussel M, Talbot E, Pareige C, Nalini R P, Gourbilleau F, Pareige P 2013 Appl. Phys. Lett. 103 203109

    [10]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [11]

    Baruah S, Ganesh R, Avinash K 2015 J. Chem. Phys. 22 082116

    [12]

    Luo B C, Liu X R, Wei B 2009 J. Appl. Phys. 106 053523

    [13]

    Hatch H W, Mittal J, Shen V K 2015 J. Chem. Phys. 142 164901

    [14]

    Moucka F, Bratko D, Luzar A 2015 J. Chem. Phys. 142 124705

    [15]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B 2015 Sci. Rep. 5 16335

    [16]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [17]

    Jansen H P, Sotthewes K, Swigchem J V, Zandvliet H J W, Kooij E S 2013 Phys. Rev. E 88 013008

    [18]

    Zhou F M, Sun D K, Zhu M F 2009 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2009 物理学报 59 3394]

    [19]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [20]

    Cahn J W, Hilliard J H 1958 J. Chem. Phys. 28 258

    [21]

    Spaepen F 1975 Acta Metall. 23 729

    [22]

    Rogers J R, Davis R H 1990 Metall. Trans. A 21 59

    [23]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid. Mech. 6 350

    [24]

    Smithells C J 1984 Metals Reference Book (6th Ed.) (London: Butterworth) pp10-16

  • [1]

    Delfino G, Squarcini A 2014 Phys. Rev. Lett. 113 066101

    [2]

    Cui L M, Li J, Zhang Y, Zhao L, Deng H, Huang K Q, Li H K, Zheng D N 2014 Chin. Phys. B 23 098501

    [3]

    Sabin J, Bailey A E, Espinosa G, Frisken B J 2012 Phys. Rev. Lett. 109 195701

    [4]

    Prisk T R, Pantalei C, Kaiser H, Sokol P E 2012 Phys. Rev. Lett. 109 075301

    [5]

    Wu Y H, Wang W L, Wei B 2015 Comp. Mater. Sci. 103 179

    [6]

    Patel A J, Rappl T J, Balsara N P 2011 Phys. Rev. Lett. 106 035702

    [7]

    Zhang X M, Wang W L, Ruan Y, Wei B 2010 Chin. Phys. Lett. 27 026401

    [8]

    Takahashi Y, Yamaoka K, Yamazaki Y, Miyazaki T, Fujiwara T 2013 Appl. Phys. Lett. 103 071909

    [9]

    Roussel M, Talbot E, Pareige C, Nalini R P, Gourbilleau F, Pareige P 2013 Appl. Phys. Lett. 103 203109

    [10]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [11]

    Baruah S, Ganesh R, Avinash K 2015 J. Chem. Phys. 22 082116

    [12]

    Luo B C, Liu X R, Wei B 2009 J. Appl. Phys. 106 053523

    [13]

    Hatch H W, Mittal J, Shen V K 2015 J. Chem. Phys. 142 164901

    [14]

    Moucka F, Bratko D, Luzar A 2015 J. Chem. Phys. 142 124705

    [15]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B 2015 Sci. Rep. 5 16335

    [16]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815

    [17]

    Jansen H P, Sotthewes K, Swigchem J V, Zandvliet H J W, Kooij E S 2013 Phys. Rev. E 88 013008

    [18]

    Zhou F M, Sun D K, Zhu M F 2009 Acta Phys. Sin. 59 3394 (in Chinese) [周丰茂, 孙东科, 朱鸣芳 2009 物理学报 59 3394]

    [19]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [20]

    Cahn J W, Hilliard J H 1958 J. Chem. Phys. 28 258

    [21]

    Spaepen F 1975 Acta Metall. 23 729

    [22]

    Rogers J R, Davis R H 1990 Metall. Trans. A 21 59

    [23]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid. Mech. 6 350

    [24]

    Smithells C J 1984 Metals Reference Book (6th Ed.) (London: Butterworth) pp10-16

  • [1] 王汝佳, 吴士平, 陈伟. 热粘弹波在变温非均匀合金熔体中的传播. 物理学报, 2019, 68(4): 048101. doi: 10.7498/aps.68.20181923
    [2] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [3] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [4] 王花, 陈琼, 王文广, 厚美瑛. 颗粒气体团簇行为实验研究. 物理学报, 2016, 65(1): 014502. doi: 10.7498/aps.65.014502
    [5] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [6] 石峰, 李伟斌, 李景庆, 蓝鼎, 王育人. 限位液滴瞬时失重自激振荡. 物理学报, 2015, 64(19): 196801. doi: 10.7498/aps.64.196801
    [7] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [8] 李思祺, 齐卫宏. Ag-Au二元纳米微粒吸收谱的计算. 物理学报, 2014, 63(11): 117802. doi: 10.7498/aps.63.117802
    [9] 徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟. 微重力条件下不同截面形状管中毛细流动的实验研究. 物理学报, 2013, 62(13): 134702. doi: 10.7498/aps.62.134702
    [10] 李永强, 张晨辉, 刘玲, 段俐, 康琦. 微重力下圆管毛细流动解析近似解研究. 物理学报, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [11] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] 弭光宝, 李培杰, Охапкин А В, Константинова Н Ю, Сабирзянов А А, Попель П С. 液态结构与性质关系Ⅱ——Mg-9Al熔体的运动黏度及与熔体微观结构的关系. 物理学报, 2011, 60(5): 056601. doi: 10.7498/aps.60.056601
    [13] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [14] 徐锦锋, 代富平, 魏炳波. 急冷条件下Cu-Pb偏晶合金的相分离研究. 物理学报, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [15] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
    [16] 霍崇儒, 朱振和, 葛培文, 陈冬. 微重力下溶液法晶体生长模型中晶体生长界面稳定性的研究. 物理学报, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [17] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅱ). 物理学报, 2000, 49(12): 2498-2501. doi: 10.7498/aps.49.2498
    [18] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅰ). 物理学报, 2000, 49(12): 2494-2497. doi: 10.7498/aps.49.2494
    [19] 江国健, 张擎雪, 庄汉锐, 李文兰, 李懋滋. TiC和AlN材料制备中的重力行为研究(Ⅲ). 物理学报, 2000, 49(12): 2502-2506. doi: 10.7498/aps.49.2502
    [20] 王超英, 翟光杰, 吴兰生, 麦振洪, 李 宏, 张海峰, 丁炳哲. 重力对GaSb熔滴和液/固界面交互作用的影响. 物理学报, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
计量
  • 文章访问数:  5080
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-03-02
  • 刊出日期:  2016-05-05

/

返回文章
返回