搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于润湿阶跃的水下大尺度气膜封存方法

胡海豹 王德政 鲍路瑶 文俊 张招柱

引用本文:
Citation:

基于润湿阶跃的水下大尺度气膜封存方法

胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱

Maintaining large-scale gas layer by creating wettability difference on surfaces under water

Hu Hai-Bao, Wang De-Zheng, Bao Lu-Yao, Wen Jun, Zhang Zhao-Zhu
PDF
导出引用
  • 超疏水表面水下减阻效果通常与其微结构上封存气膜的厚度和面积正相关, 且气膜尺寸越大封存越困难. 构造亲疏水相间表面, 能在壁面形成润湿阶跃, 产生约束固-气-液三相接触线移动的束缚力. 通过监测切向水流作用下, 润湿阶跃为54.8, 84.7, 103.6和144.0的亲疏水相间表面上不同面积和厚度气膜的形态发现, 厘米尺度气膜可被长时间稳定封存, 且气膜破坏的临界流速随润湿阶跃和气膜厚度的增加而升高, 随气膜迎流宽度增加而降低. 同时, 该方法封存的气膜上能产生显著滑移量, 尺寸0.6 cm0.5 cm0.15 cm的气膜上即可产生约占主流速度25%的稳定滑移速度. 期待该气膜封存方法能进一步提升超疏水表面水下减阻技术性能.
    Superhydrophobic surfaces with micro- and nano-scale structures are conducible to maintaining a gas layer where prominent slippage effect exists. It has been demonstrated that the drag reduction of superhydrophobic surface increases with growing the fraction of the gas-water interface and the rising of the thickness of gas layer. Whereas a large thick gas layer on the superhydrophobic surface collapses easily under tangential water flow. Here, we present a new method to maintain large-scale gas layer by creating hydrophilic patterns at the superhydrophobic surface, on which the binding force of air on the solid surface can be caused by wettability difference. Through testing the states of gas layer trapped on surfaces with wettability differences equal to 54.8, 84.7, 103.6 and 144.0 in apparent contact angle, respectively, the conditions of maintaining gas layer are mainly considered. We demonstrate that the critical velocity, over which the gas layer begins to collapse under the tangential water flow, is positively correlated with the thickness of the gas layer and the wettability difference between the superhydrophobic area and hydrophilic area, however, this is negatively correlated with the width of the gas layer in the crosswise direction. It is noteworthy that even a centimeter-scale gas layer can be kept steady in ~0.9 m/s through this method. Furthermore, an obvious slip velocity up to ~25% of bulk velocity is observed at the gas-water interface, through measuring the velocity profile above the 0.6 cm-long, 0.5 cm-wide and 0.15 cm-thick gas layer by using the PIV technology. We anticipate that this novel method of gas entrapment under water will effectively widen the applications of superhydrophobic surfaces for drag reduction.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51335010, 51109178)、中央高校基本科研业务费专项资金项目(批准号: 3102015ZY017)和西北工业大学研究生创意创新种子基金(批准号: Z2016055)资助的课题.
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51335010, 51109178), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015ZY017), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2016055).
    [1]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157

    [2]

    Song D, Daniello R J, Rothstein J P 2014 Exp. Fluids 55 8

    [3]

    Song D, Song B W, Hu H B, Du X S, Zhou F 2015 Phys. Chem. Chem. Phys. 17 21

    [4]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 物理学报 62 154701]

    [6]

    Tretheway D C, Meinhart C D 2002 Phys. Fluids 14 9

    [7]

    Ou J, Rothstein J P 2005 Phys. Fluids 17 10

    [8]

    Busse A, Sandham N D, McHale G, Newton M I 2013 J. Fluid Mech. 727 488

    [9]

    Kwon B H, Kim H H, Jeon H J, Kim M C, Lee I, Chun S, Go J S 2014 Exp. Fluids 55 1722

    [10]

    Samaha M A, Tafreshi H V, Gad-el-Hak M 2011 Phys. Fluids 23 012001

    [11]

    Jagdish B N, Brandon T Z X, Kwee T J, Dev A K 2014 J. Ship Res. 58 30

    [12]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [13]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [14]

    McHale G 2007 Langmuir 23 15

    [15]

    Furmidge C G L 1962 J. Colloid Sci. 17 309

  • [1]

    Bechert D W, Bruse M, Hage W, Meyer R 2000 Naturwissenschaften 87 157

    [2]

    Song D, Daniello R J, Rothstein J P 2014 Exp. Fluids 55 8

    [3]

    Song D, Song B W, Hu H B, Du X S, Zhou F 2015 Phys. Chem. Chem. Phys. 17 21

    [4]

    Hu H B, Du P, Huang S H, Wang Y 2013 Chin. Phys. B 22 074703

    [5]

    Song B W, Guo Y H, Luo Z Z, Xu X H, Wang Y 2013 Acta Phys. Sin. 62 154701 (in Chinese) [宋保维, 郭云鹤, 罗莊竹, 徐向辉, 王鹰 2013 物理学报 62 154701]

    [6]

    Tretheway D C, Meinhart C D 2002 Phys. Fluids 14 9

    [7]

    Ou J, Rothstein J P 2005 Phys. Fluids 17 10

    [8]

    Busse A, Sandham N D, McHale G, Newton M I 2013 J. Fluid Mech. 727 488

    [9]

    Kwon B H, Kim H H, Jeon H J, Kim M C, Lee I, Chun S, Go J S 2014 Exp. Fluids 55 1722

    [10]

    Samaha M A, Tafreshi H V, Gad-el-Hak M 2011 Phys. Fluids 23 012001

    [11]

    Jagdish B N, Brandon T Z X, Kwee T J, Dev A K 2014 J. Ship Res. 58 30

    [12]

    Song B W, Ren F, Hu H B, Guo Y H 2014 Acta Phys. Sin. 63 054708 (in Chinese) [宋保维, 任峰, 胡海豹, 郭云鹤 2014 物理学报 63 054708]

    [13]

    Wang B, Wang J D, Chen D R 2014 Acta Phys. Sin. 63 074702 (in Chinese) [王宝, 汪家道, 陈大融 2014 物理学报 63 074702]

    [14]

    McHale G 2007 Langmuir 23 15

    [15]

    Furmidge C G L 1962 J. Colloid Sci. 17 309

  • [1] 黄虎, 田泽冰. 海洋深水表面张力波-重力波的单波列第n阶自共振定律. 物理学报, 2023, 72(5): 054701. doi: 10.7498/aps.72.20221281
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 春江, 王瑾萱, 徐晨, 温荣福, 兰忠, 马学虎. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
    [4] 王宇航, 袁猛, 明平剑. 物性参数对液滴的聚并自弹跳的影响及其关联分析. 物理学报, 2021, 70(12): 124702. doi: 10.7498/aps.70.20201714
    [5] 张彬, 成鹏, 李清廉, 陈慧源, 李晨阳. 液体横向射流在气膜作用下的破碎过程. 物理学报, 2021, 70(5): 054702. doi: 10.7498/aps.70.20201384
    [6] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [8] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [9] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [10] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [11] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [12] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [13] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [14] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [15] 刘思思, 张朝辉, 何建国, 周杰, 尹恒洋. 亲水性微观粗糙表面润湿状态转变性能研究. 物理学报, 2013, 62(20): 206201. doi: 10.7498/aps.62.206201
    [16] 张敏梁, 田煜, 蒋继乐, 孟永钢, 温诗铸. 极板形貌修饰对电流变液/极板界面滑移抑制实验研究. 物理学报, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [17] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [18] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [19] 吴君汝, A. LARRAZA, I. RUDNICK. 水表面波矩型谐振器非线性共振曲线的测量. 物理学报, 1985, 34(6): 796-800. doi: 10.7498/aps.34.796
    [20] 钱临照;何寿安. 在铝晶体表面上刻纹所导致的滑移的特征. 物理学报, 1956, 12(6): 647-650. doi: 10.7498/aps.12.647
计量
  • 文章访问数:  5292
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-04-19
  • 刊出日期:  2016-07-05

/

返回文章
返回