搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙海面对高斯分布激光光束的反射模型推导

张晓晖 张爽 孙春生

引用本文:
Citation:

粗糙海面对高斯分布激光光束的反射模型推导

张晓晖, 张爽, 孙春生

Modeling of Gaussian laser beam reflection from rough sea surface

Zhang Xiao-Hui, Zhang Shuang, Sun Chun-Sheng
PDF
导出引用
  • 研究激光光束海面反射光强的方向分布特性对海上光电对抗等领域的工程实践具有重要意义. 本文采用分形方法模拟粗糙海面, 并在海面基准坐标系中建立起描述粗糙海面几何特征的数学方程, 然后基于蒙特卡罗方法模拟高斯光束, 依据几何光学原理在基准坐标系下推导了高斯光束的海面反射模型, 采用该模型可以编程计算激光光束海面反射光强的方向分布. 将模拟计算结果与实验结果进行了对比分析, 结果表明该模型可以较好地反映激光光束海面反射光强的分布趋势, 验证了模型的有效性.
    Studies on the direction distribution of laser beam intensity reflected from the sea surface is important for engineering practice in the area of optoelectronic confrontation on the sea surface. In the traditional theory of electromagnetic scattering from rough surfaces, the scattered field from the sea surface can be obtained by solving the Maxwell's equations. As is well known, it is difficult to solve the Maxwell's equations. Therefore, the numerical calculation method and approximate analytical method are used to obtain the scattered field from the sea surface. However, for the numerical calculation method, it is difficult to meet the computing requirements of large electrically targets such as the sea surface. Meanwhile the approximate analytical method has certain restrictions on the parameters of rough surface in physical approximation. What is more, the inherent error is also caused by the physical approximation. In this paper, we investigate the laser beam reflection from rough sea surface with Monte Carlo method and principles of geometric optics. The rough sea surface which is simulated with the fractal method is divided into a lot of small planes, and the mathematical equations to describe the geometric characteristics of the planes are established in the sea reference coordinate system. After that, based on the simulation of Gaussian beam with Monte Carlo method, the laser beam is divided into a great number of rays and the statistical properties of the rays satisfy the propagation characteristics of Gaussian beam. Then, the laser beam reflection model from the sea surface is derived in the reference coordinate system. The direction distribution of the laser beam intensity reflected from the sea surface is simulated under a certain experiment condition with this model. The results show that the simulation results of laser beam reflection from the sea surface fit the experimental results well.
      Corresponding author: Zhang Shuang, zhangshuangyue@sina.com
    [1]

    Otremba Z 2004 Opt. Express 15 1671

    [2]

    Sun L J, Tian Z S, Ren X Y, Zhang Y C, Fu S Y 2014 Acta Phys. Sin. 63 134211 (in Chinese) [孙兰君, 田兆硕, 任秀云, 张延超, 付石友 2014 物理学报 63 134211]

    [3]

    Gleason A C, Voss K J, Gordon H R, Twardowski M, Sullivan J, Trees C, Weidemann A, Berthon J F, Clark D, Lee Z P 2012 Opt. Express 20 7630

    [4]

    Hu Y X, Vaughan M, Liu Z Y, Lin B, Yang P, Flittner D, Hunt B, Kuehn R, Huang J P, Wu D, Rodier S, Powell K, Trepte C, Winker D 2007 Opt. Express 15 5327

    [5]

    Barton J S, Jasinski, M F 2011 Remote Sens. 3 1492

    [6]

    Zheng Y, Yang K C, Xia M, Rao J H 2008 J. Appl. Opt. 29 785 (in Chinese) [郑毅, 杨克成, 夏珉, 饶炯辉 2008 应用光学 29 785]

    [7]

    Li K, Wang J A, Yao Y 2012 Infrared Laser Eng. 41 1458 (in Chinese) [李恪, 王江安, 姚瑶 2012 红外与激光工程 41 1458]

    [8]

    Xi P L, Li K 2015 Laser Infrared 45 256 (in Chinese) [席沛丽, 李恪 2015 激光与红外 45 256]

    [9]

    Fan T Q, Guo L X, Jin J, Meng X 2014 Acta Phys. Sin. 63 214104 (in Chinese) [范天奇, 郭立新, 金健, 孟肖 2014 物理学报 63 214104]

    [10]

    Nie D, Zhang M 2010 Chin. Phys. B 19 074101

    [11]

    Qi X, Han X E 2015 Acta Optica Sin. 35 0829003 (in Chinese) [亓晓, 韩香娥 2015 光学学报 35 0829003]

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Kubicke G, Bourlier C, Saillard J 2008 Waves Random Complex Media 18 495

    [14]

    Berizzi F, Dalle-Mese E 2002 IEEE. Tran. Antenn. Propag. 50 912

  • [1]

    Otremba Z 2004 Opt. Express 15 1671

    [2]

    Sun L J, Tian Z S, Ren X Y, Zhang Y C, Fu S Y 2014 Acta Phys. Sin. 63 134211 (in Chinese) [孙兰君, 田兆硕, 任秀云, 张延超, 付石友 2014 物理学报 63 134211]

    [3]

    Gleason A C, Voss K J, Gordon H R, Twardowski M, Sullivan J, Trees C, Weidemann A, Berthon J F, Clark D, Lee Z P 2012 Opt. Express 20 7630

    [4]

    Hu Y X, Vaughan M, Liu Z Y, Lin B, Yang P, Flittner D, Hunt B, Kuehn R, Huang J P, Wu D, Rodier S, Powell K, Trepte C, Winker D 2007 Opt. Express 15 5327

    [5]

    Barton J S, Jasinski, M F 2011 Remote Sens. 3 1492

    [6]

    Zheng Y, Yang K C, Xia M, Rao J H 2008 J. Appl. Opt. 29 785 (in Chinese) [郑毅, 杨克成, 夏珉, 饶炯辉 2008 应用光学 29 785]

    [7]

    Li K, Wang J A, Yao Y 2012 Infrared Laser Eng. 41 1458 (in Chinese) [李恪, 王江安, 姚瑶 2012 红外与激光工程 41 1458]

    [8]

    Xi P L, Li K 2015 Laser Infrared 45 256 (in Chinese) [席沛丽, 李恪 2015 激光与红外 45 256]

    [9]

    Fan T Q, Guo L X, Jin J, Meng X 2014 Acta Phys. Sin. 63 214104 (in Chinese) [范天奇, 郭立新, 金健, 孟肖 2014 物理学报 63 214104]

    [10]

    Nie D, Zhang M 2010 Chin. Phys. B 19 074101

    [11]

    Qi X, Han X E 2015 Acta Optica Sin. 35 0829003 (in Chinese) [亓晓, 韩香娥 2015 光学学报 35 0829003]

    [12]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 (in Chinese) [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]

    [13]

    Kubicke G, Bourlier C, Saillard J 2008 Waves Random Complex Media 18 495

    [14]

    Berizzi F, Dalle-Mese E 2002 IEEE. Tran. Antenn. Propag. 50 912

  • [1] 张书赫, 邵梦, 张盛昭, 周金华. 傅里叶域中的光线. 物理学报, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [2] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计. 物理学报, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [3] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究. 物理学报, 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [4] 严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰. 基于微透镜阵列匀束的激光二极管面阵抽运耦合系统分析. 物理学报, 2018, 67(18): 184201. doi: 10.7498/aps.67.20172473
    [5] 吕向博, 朱菁, 杨宝喜, 黄惠杰. 基于ybar-y图的光学结构计算方法研究. 物理学报, 2015, 64(11): 114201. doi: 10.7498/aps.64.114201
    [6] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟. 物理学报, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [7] 周建华, 李栋华, 曾阳素, 朱鸿鹏. 梯度负折射率介质中高斯光束传输特性的研究. 物理学报, 2014, 63(10): 104205. doi: 10.7498/aps.63.104205
    [8] 孙金霞, 潘国庆, 刘英. 面对称光学系统的初级波像差理论研究. 物理学报, 2013, 62(9): 094203. doi: 10.7498/aps.62.094203
    [9] 张艳峰, 李玉栋, 赵立华, 刘洪冰, 陈靖, 崔国新, 许京军, 孙骞. 高斯光束中吸收双层球形微粒的横向光俘获. 物理学报, 2009, 58(1): 258-263. doi: 10.7498/aps.58.258
    [10] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [11] 李建龙, 吕百达. 线偏振高斯光束通过复合型衍射光栅的传输特性. 物理学报, 2008, 57(3): 1656-1661. doi: 10.7498/aps.57.1656
    [12] 赵延仲, 孙华燕, 宋丰华, 唐黎明, 吴伟伟, 张 曦, 郭惠超. 激光辐照猫眼光学镜头时的反射特性机理研究. 物理学报, 2008, 57(4): 2284-2294. doi: 10.7498/aps.57.2284
    [13] 刘华刚, 章若冰, 张海清, 朱 晨, 马 晶, 王清月. 发散光束抽运的宽带光参量啁啾脉冲放大系统的理论研究. 物理学报, 2007, 56(8): 4635-4641. doi: 10.7498/aps.56.4635
    [14] 陈守满, 石顺祥, 董洪舟. 有偏压光折变晶体中的高斯孤子. 物理学报, 2007, 56(3): 1379-1384. doi: 10.7498/aps.56.1379
    [15] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [16] 李建龙, 吕百达. 线偏振高斯光束通过条形浮雕光栅的传输. 物理学报, 2007, 56(10): 5778-5783. doi: 10.7498/aps.56.5778
    [17] 王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国. 基于高斯光束特性的Mie散射大气激光雷达回波近场信号校正研究. 物理学报, 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [18] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [19] 郭 旗, 许超彬. 偏离束腰入射对非局域非线性介质中高斯光束演化的影响. 物理学报, 2004, 53(9): 3025-3032. doi: 10.7498/aps.53.3025
    [20] 郝中华, 刘劲松. 无偏压的串联光折变晶体回路中高斯光束传播特性调节. 物理学报, 2002, 51(12): 2772-2777. doi: 10.7498/aps.51.2772
计量
  • 文章访问数:  5793
  • PDF下载量:  310
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-25
  • 修回日期:  2016-04-13
  • 刊出日期:  2016-07-05

/

返回文章
返回