搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导单光子探测器暗计数对激光测距距离的影响

张森 陶旭 冯志军 吴淦华 薛莉 闫夏超 张蜡宝 贾小氢 王治中 孙俊 董光焰 康琳 吴培亨

引用本文:
Citation:

超导单光子探测器暗计数对激光测距距离的影响

张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨

Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate

Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng
PDF
导出引用
  • 超导纳米线单光子探测器(SNSPD)是一种新型单光子探测器,具有灵敏度高、时间精度高、探测速度快和暗计数低等特点,在激光测距等领域具有重要应用前景. 本文将SNSPD应用到1064 nm 波段激光测距系统,研究了其暗计数和信噪比对激光测距的影响. 基于实验获得的回波数据,结合激光雷达理论,研究了系统信噪比与脉冲积累次数的关系. 分析表明,SNSPD暗计数是影响测距距离的关键因素之一. 结合仿真,进一步探究了基于SNSPD的激光测距系统信噪比与回波率、暗计数的关系,暗计数较大时,信噪比随脉冲积累次数增加出现波动现象,回波信号湮没. 由于SNSPD暗计数极低,本基于SNSPD的测距系统最远测距可达280 km,较同样条件下基于APD探测器的测距系统最远探测距离远40 km,在军事侦查、探测和制导等领域具有重要应用前景.
    Superconducting nanowire single photon detector (SNSPD) is a competitive candidate in laser ranging at 1064 nm wavelength compared with other single photon detectors such as InGaAs/InP APD for its high sensitivity, high time precision and low dark counts. In this paper, we apply our SNSPD to a laser ranging system measuring target in Qinghai lake area with atmospheric scatter. The echo photons are received by telescope, and transport through the multimode fiber to the SNSPD photon-sensitive area. The SNSPD, integrated in an optical cavity with a resonant wavelength of 1064 nm, is fabricated on a MgF2 substrate. The optical absorption of NbN film goes up to 98% according to FDTD simulation, and the system efficiency is measured to be about 40%. A pulsed laser at 1064 nm, featuring a peak power of 12 MW and a pulse width of 10 ns, is adopted in the laser ranging system. In this experiment, we first measure the system intrinsic noise and the environment noise introduced into the laser ranging system after turning off the laser. After that, we measure the echo rate for the target at 126 km, which increases up to 96% with an attenuator of 10 dB at the receiver side. The maximum distance of the laser ranging system is analyzed based on the experimental results of dark count and echo rate through a theoretical model of laser radar. The analysis indicates that signal-to-noise ratio (SNR) is increased smoothly with the accumulation of time. At the same time, we simulate how the dark counts influence the capability of laser ranging system based on SNSPD, the simulated SNR matches well with the experimental data of target at 126 km. Furthermore, the dark counts, accumulation of time and probability of echo photon affect the SNR according to the simulation results, showing that large dark counts would result in SNR fluctuation and signal annihilation when the probability of echo photon is low. Thus, the maximum distance of laser ranging under the assumption of integration time is estimated through the SNR simulated result, showing that a maximum distance is up to 280 km, 40 km far away from APD detector based system under the same conditions mainly due to the very low dark counts of SNSPD. It should be pointed out that the coupling efficiency between SNSPD and the receiving telescope is low for small view field limited by the 62.5 m fiber of SNSPD. Thus, further work is to fabricate SNSPD with a larger coupling area which is possible to increase the maximum distance with improved coupling settings.
      通信作者: 张蜡宝, Lzhang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11227904,61471189)资助的课题.
      Corresponding author: Zhang La-Bao, Lzhang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11227904, 61471189).
    [1]

    Degnan J J 2007 International Workshop From Quantum to Cosmos-Fundamental Physics Research in Space Warrenton, Virginia, May 21-24, 2007 p2137

    [2]

    Ren M, Gu X, Liang Y, Kong Y, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497

    [3]

    Scarcella C, Boso G, Ruggeri A, Tosi A, Tosi A 2015 IEEE J. Sel. Top. Quantum Electron. 21 17

    [4]

    Dauler E A, Kerman A J, Robinson B S, Yang J K, Voronov B, Gol'tsman G, tsman G, Hamilton S A, Berggren K K 2009 J. Mod. Opt. 56 364

    [5]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phy. Sin. 60 038501 (in Chinese) [张腊宝, 康 琳, 陈 健, 赵清源, 郏 涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 物理学报 60 038501]

    [6]

    Zhang L, Zhao Q, Zhong Y, Chen J, Cao C, Xu W, Kang L, Wu P, Shi W 2009 Appl. Phys. B 97 187

    [7]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [8]

    Chen S, Liu D, Zhang W, You L, He Y, Zhang W, Yang X, Wu G, Ren M, Zeng H, Wang Z, Xie X, Jiang M 2013 Appl. Opt. 52 3241

    [9]

    Vodolazov D Y, Korneeva Y P, Semenov A V, Korneev A A, Gol'tsman G N 2015 Phys. Rev. B 2 9

    [10]

    Henrich D, Dorner S, Hofherr M, Il'in K, Semenov A, Heintze E, Scheffler M, Dressel M, Siegel M, Siegel M 2012 J. Appl. Phys. 112 8

    [11]

    Shibata H, Honjo T, Shimizu K 2014 Opt. Lett. 39 5078

    [12]

    Wang Z, Miki S, Fujiwara M 2009 IEEE J. Sel. Top. Quantum Electron. 15 1741

    [13]

    Natarajan C M, Haertig M M, Warburton R E, Buller G D, Hadfield R H, Baek B, Nam S W, Miki S, Fujiwara M, Sasaki M, Wang Z 2010 1st International Conference of Quantum Communication and Quantum Networking Naples, Italy Octorber 26-30, 2010 p225

    [14]

    Fitzpatrick C R, Natarajan C M, Warburton R E, Buller G S, Baek B, Nam D, Miki D, Wang Z, Sasaki M, Sinclair A G, Hadfield R H 2010 Conference on Advanced Photon Counting Techniques IV Orlando, Florida, April 7-8, 2010 76810H

    [15]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [16]

    Zhang L, Wan C, Gu M, Xu R, Zhang S, Kang L, Chen J, Wu P 2015 Sci. Bull. 60 1434

    [17]

    Zhang L, Gu M, Jia T, Qiu J, Kang L, Sun G, Chen J, Jin B, Xu W, Wu P 2014 Appl. Phys. B 115 295

    [18]

    Miki S, Yamashita T, Fujiwara M, Sasaki M, Wang Z 2011 IEEE Trans. Appl. Supercond. 21 332

    [19]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [20]

    Zhai D S, Fu H L, He S H, Zheng X M, Li Z L, Li Y Q, Xiong Y H 2009 Astro. Res. Tech. 6 13 (in Chinese)[翟东升, 伏红林, 何少辉, 郑向明, 李祝莲, 李语强, 熊耀恒 2009 天文研究与技术 6 13]

    [21]

    Bao Z, Liang Y, Wang Z, Li Z, Wu E, Wu G, Zeng H 2014 Appl. Opt. 53 3908

    [22]

    Pellegrini S, Buller G, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712

  • [1]

    Degnan J J 2007 International Workshop From Quantum to Cosmos-Fundamental Physics Research in Space Warrenton, Virginia, May 21-24, 2007 p2137

    [2]

    Ren M, Gu X, Liang Y, Kong Y, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497

    [3]

    Scarcella C, Boso G, Ruggeri A, Tosi A, Tosi A 2015 IEEE J. Sel. Top. Quantum Electron. 21 17

    [4]

    Dauler E A, Kerman A J, Robinson B S, Yang J K, Voronov B, Gol'tsman G, tsman G, Hamilton S A, Berggren K K 2009 J. Mod. Opt. 56 364

    [5]

    Zhang L B, Kang L, Chen J, Zhao Q Y, Jia T, Xu W W, Cao C H, Jin B B, Wu P H 2011 Acta Phy. Sin. 60 038501 (in Chinese) [张腊宝, 康 琳, 陈 健, 赵清源, 郏 涛, 许伟伟, 曹春海, 金飚兵, 吴培亨 2011 物理学报 60 038501]

    [6]

    Zhang L, Zhao Q, Zhong Y, Chen J, Cao C, Xu W, Kang L, Wu P, Shi W 2009 Appl. Phys. B 97 187

    [7]

    Zhang L, Kang L, Chen J, Zhong Y, Zhao Q, Jia T, Cao C, Jin B, Xu W, Sun G, Wu P 2011 Appl. Phys. B 102 867

    [8]

    Chen S, Liu D, Zhang W, You L, He Y, Zhang W, Yang X, Wu G, Ren M, Zeng H, Wang Z, Xie X, Jiang M 2013 Appl. Opt. 52 3241

    [9]

    Vodolazov D Y, Korneeva Y P, Semenov A V, Korneev A A, Gol'tsman G N 2015 Phys. Rev. B 2 9

    [10]

    Henrich D, Dorner S, Hofherr M, Il'in K, Semenov A, Heintze E, Scheffler M, Dressel M, Siegel M, Siegel M 2012 J. Appl. Phys. 112 8

    [11]

    Shibata H, Honjo T, Shimizu K 2014 Opt. Lett. 39 5078

    [12]

    Wang Z, Miki S, Fujiwara M 2009 IEEE J. Sel. Top. Quantum Electron. 15 1741

    [13]

    Natarajan C M, Haertig M M, Warburton R E, Buller G D, Hadfield R H, Baek B, Nam S W, Miki S, Fujiwara M, Sasaki M, Wang Z 2010 1st International Conference of Quantum Communication and Quantum Networking Naples, Italy Octorber 26-30, 2010 p225

    [14]

    Fitzpatrick C R, Natarajan C M, Warburton R E, Buller G S, Baek B, Nam D, Miki D, Wang Z, Sasaki M, Sinclair A G, Hadfield R H 2010 Conference on Advanced Photon Counting Techniques IV Orlando, Florida, April 7-8, 2010 76810H

    [15]

    Li H, Chen S, You L, Meng W, Wu Z, Zhang Z, Tang K, Zhang L, Zhang W, Yang X, Liu X, Wang Z, Xie X 2016 Opt. Express 24 3535

    [16]

    Zhang L, Wan C, Gu M, Xu R, Zhang S, Kang L, Chen J, Wu P 2015 Sci. Bull. 60 1434

    [17]

    Zhang L, Gu M, Jia T, Qiu J, Kang L, Sun G, Chen J, Jin B, Xu W, Wu P 2014 Appl. Phys. B 115 295

    [18]

    Miki S, Yamashita T, Fujiwara M, Sasaki M, Wang Z 2011 IEEE Trans. Appl. Supercond. 21 332

    [19]

    Rosfjord K M, Yang J K W, Dauler E A, Kerman A J, Anant V, Voronov B M, Gol'tsman G N, Berggren K K 2006 Opt. Express 14 527

    [20]

    Zhai D S, Fu H L, He S H, Zheng X M, Li Z L, Li Y Q, Xiong Y H 2009 Astro. Res. Tech. 6 13 (in Chinese)[翟东升, 伏红林, 何少辉, 郑向明, 李祝莲, 李语强, 熊耀恒 2009 天文研究与技术 6 13]

    [21]

    Bao Z, Liang Y, Wang Z, Li Z, Wu E, Wu G, Zeng H 2014 Appl. Opt. 53 3908

    [22]

    Pellegrini S, Buller G, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统. 物理学报, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [3] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [4] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [7] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [8] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [9] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [10] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [12] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [13] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [14] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [15] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔. 物理学报, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [16] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [17] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [18] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [19] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
    [20] 焦荣珍, 冯晨旭, 马海强. 1.55 μm升频单光子探测量子密钥分配系统的性能研究. 物理学报, 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
计量
  • 文章访问数:  6595
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-07
  • 修回日期:  2016-06-17
  • 刊出日期:  2016-09-05

/

返回文章
返回