搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形光子晶体光纤中涡旋光的传输特性研究

张羚翔 魏薇 张志明 廖文英 杨振国 范万德 李乙钢

引用本文:
Citation:

环形光子晶体光纤中涡旋光的传输特性研究

张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢

Propagation properties of vortex beams in a ring photonic crystal fiber

Zhang Ling-Xiang, Wei Wei, Zhang Zhi-Ming, Liao Wen-Ying, Yang Zhen-Guo, Fan Wan-De, Li Yi-Gang
PDF
导出引用
  • 由于涡旋光具有轨道角动量,将它应用于光纤通信领域可以有效提高信息传输速率.设计了一种环形光子晶体光纤,利用COMSOL Multiphysics软件对其涡旋光TE01,HE21±和TM01模式特性进行模拟计算,它们之间有效折射率差分别为4.59×10-4和3.62×10-4;其中,TE01模式的涡旋光在入射光波长范围为1650–1950 nm时,色散值在44.18–45.83 ps·nm-1·km-1之间平坦;入射光波长在1550 nm时,TE01模式的涡旋光的非线性系数为1.37 W-1·km-1.该结构的光子晶体光纤的涡旋光具有损耗小、色散平坦等特性,对光纤中传输涡旋光、将涡旋光应用于超连续谱等方面的研究具有重要意义.
    In the last decade, the vortex beams have received lots of attention for their orbital angular momentum.When they are applied to optical fiber communication field,the data channels will increase and information propagation speed will be effectively improved. Recently, researchers have shown the capabilities of long length stably propagation, nonlinear frequency conversion and mode division multiplexing of vortex modes in a ring fiber. Due to the photonic crystal fiber(PCF) having very flexible design degrees of freedom, it will enable a wide range of propagation properties. In this paper, a SiO2 air-hole ring PCF is proposed for separation and propagation of optical vortex modes.By using COMSOL Multiphysics software,the vortex modes(TE01, HE21± and TM01) are simulated and calculated. The differences in effective refractive index between them are 4.59×10-4 and 3.62×10-4 respectively. One can analyze the propagation properties of vortex beams in the ring PCF by changing the size of first layer air hole radius and air hole pitch. When the incident light wavelength of TE01 mode ranges from 1650 nm to 1950 nm, this ring PCF can achieve a total dispersion variation between 44.18 to 45.83 ps·nm-1·km-1, which is tend to be flat. When incident light wavelength is 1550 nm, the nonlinear coefficient of TE01 mode vortex light is 1.37 W-1·km-1. Due to the fact that long wavelength light is easier to leakage through the cladding than the short wavelength light, the confinement loss increases with the wavelength. When incident light wavelength is 2000 nm, there is still an eight-orders-of-magnitude of the low confinement loss. Theoretically, flat dispersion and low loss vortex beams in this fiber can be beneficial to propagating stably, and the vortex modes lay the foundation for long distance propagation in the optical fiber. In the future, this ring PCF will be used in optical fiber communication field and applications in aspects such as continuous spectrum research, which can make it have immense advantage over traditional fibers.
      通信作者: 李乙钢, liyigang@nankai.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474170)和天津市自然科学基金(批准号:16JCYBJC16900)资助的课题.
      Corresponding author: Li Yi-Gang, liyigang@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11474170), and the Natural Science Foundation of Tianjin, China(Grant No. 16JCYBJC16900).
    [1]

    Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese)[姜凌红, 侯蓝田, 杨倩倩2010物理学报59 4726]

    [2]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [3]

    Swartzlander G, Law C 1992 Phys. Rev. Lett. 69 2503

    [4]

    Hou J, Wang L B, Yang C Y, Chen S P 2014 J. South-Central Univ. National.(Nat. Sci. Edition)) 33 67 (in Chinese)[侯金, 王林波, 杨春勇, 陈少平2014中南民族大学学报(自然科学版) 33 67]

    [5]

    Ramachandran S, Kristensen P, Yan M 2009 Opt. Lett. 34 2525

    [6]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [7]

    Wong G, Kang M, Lee H, Biancalana F, Conti C, Weiss T, Russell P 2012 Science 337 446

    [8]

    Yue Y, Zhang L, Yan Y, Ahmed N, Yang J, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889

    [9]

    Ung B, Wan L, Brunet C, Vaity P, Jin C, Rusch L, Messaddeq Y, La Rochelle S 2014 Optical Fiber Communication Conference San Francisco, USA, March 9-13, 2014, pTu3K.4

    [10]

    Snyder A W, Love J D 1983 Optical Waveguide Theory(London:New York:Chapman and Hall) p239

    [11]

    Gloge D 1971 Appl. Opt. 10 2252

    [12]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545

    [13]

    Hou Y, Zhou G Y, Hou L T, Jiang L H 2010 Chin. J. Lasers 37 1068 (in Chinese)[侯宇, 周桂耀, 侯蓝田, 姜凌红2010中国激光37 1068]

    [14]

    Haxha S, Ademgil H 2008 Opt. Commun. 281 278

    [15]

    Li J Y, Peng J G, Jiang Z W, Chen W, Li H Q, Luo W Y 2008 Study Opt. Commun. 4 1 (in Chinese)[李进延, 彭景刚, 蒋作文, 陈伟, 李海清, 罗文勇2008光通信研究4 1]

    [16]

    Yamamoto T, Kubota H, Kawanishiet S 2003 Opt. Express 11 1537

  • [1]

    Jiang L H, Hou L T, Yang Q Q 2010 Acta Phys. Sin. 59 4726 (in Chinese)[姜凌红, 侯蓝田, 杨倩倩2010物理学报59 4726]

    [2]

    Coullet P, Gil L, Rocca F 1989 Opt. Commun. 73 403

    [3]

    Swartzlander G, Law C 1992 Phys. Rev. Lett. 69 2503

    [4]

    Hou J, Wang L B, Yang C Y, Chen S P 2014 J. South-Central Univ. National.(Nat. Sci. Edition)) 33 67 (in Chinese)[侯金, 王林波, 杨春勇, 陈少平2014中南民族大学学报(自然科学版) 33 67]

    [5]

    Ramachandran S, Kristensen P, Yan M 2009 Opt. Lett. 34 2525

    [6]

    Ramachandran S, Kristensen P 2013 Nanophotonics 2 455

    [7]

    Wong G, Kang M, Lee H, Biancalana F, Conti C, Weiss T, Russell P 2012 Science 337 446

    [8]

    Yue Y, Zhang L, Yan Y, Ahmed N, Yang J, Huang H, Ren Y, Dolinar S, Tur M, Willner A E 2012 Opt. Lett. 37 1889

    [9]

    Ung B, Wan L, Brunet C, Vaity P, Jin C, Rusch L, Messaddeq Y, La Rochelle S 2014 Optical Fiber Communication Conference San Francisco, USA, March 9-13, 2014, pTu3K.4

    [10]

    Snyder A W, Love J D 1983 Optical Waveguide Theory(London:New York:Chapman and Hall) p239

    [11]

    Gloge D 1971 Appl. Opt. 10 2252

    [12]

    Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545

    [13]

    Hou Y, Zhou G Y, Hou L T, Jiang L H 2010 Chin. J. Lasers 37 1068 (in Chinese)[侯宇, 周桂耀, 侯蓝田, 姜凌红2010中国激光37 1068]

    [14]

    Haxha S, Ademgil H 2008 Opt. Commun. 281 278

    [15]

    Li J Y, Peng J G, Jiang Z W, Chen W, Li H Q, Luo W Y 2008 Study Opt. Commun. 4 1 (in Chinese)[李进延, 彭景刚, 蒋作文, 陈伟, 李海清, 罗文勇2008光通信研究4 1]

    [16]

    Yamamoto T, Kubota H, Kawanishiet S 2003 Opt. Express 11 1537

  • [1] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [2] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [3] 王二垒, 姜海明, 谢康, 张秀霞. 一种高双折射高非线性多零色散波长光子晶体光纤. 物理学报, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [4] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [7] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [8] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [9] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [10] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [11] 姜凌红, 侯蓝田, 杨倩倩. 三种典型结构光子晶体光纤基本特性的比较和分析. 物理学报, 2010, 59(7): 4726-4731. doi: 10.7498/aps.59.4726
    [12] 姜凌红, 侯蓝田. 双零色散光子晶体光纤结构参数的变化对其性能的影响. 物理学报, 2010, 59(2): 1095-1100. doi: 10.7498/aps.59.1095
    [13] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究. 物理学报, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [14] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [15] 魏东宾, 周桂耀, 赵兴涛, 苑金辉, 孟 佳, 王海云, 侯蓝田. 一种新型的多包层光子晶体光纤的分析方法. 物理学报, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [16] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [18] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [19] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
计量
  • 文章访问数:  6003
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-15
  • 修回日期:  2016-09-26
  • 刊出日期:  2017-01-05

/

返回文章
返回