搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于87Rb原子的大失谐光晶格的设计与操控

魏春华 颜树华 杨俊 王国超 贾爱爱 罗玉昆 胡青青

引用本文:
Citation:

基于87Rb原子的大失谐光晶格的设计与操控

魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青

Design and control of large-detuned optical lattice based on 87Rb atoms

Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing
PDF
导出引用
  • 提出了一种基于87Rb原子的大失谐光学晶格的设计方案,详细介绍了光晶格光束的校准、频率失谐的调整以及光强输出的控制方式.在磁光阱和偏振梯度冷却的基础上,研究了光学晶格的总光强和频率失谐等参数对原子装载的影响,实现了光晶格中冷原子的绝热装载与卸载.通过光强调制的方法,测量了光晶格的振动频率.光晶格的引入,使得温度降低为原有的1/3.涉及的系统设计和结论对其他碱金属原子光晶格的实验设计具有参考价值.
    An innovative and practical scheme of building far-detuned optical lattice for 87Rb atoms is proposed.The disposals of aligning the lattice beams,tuning the lattice frequency and controlling the tapered amplifier for output are described in detail.Alignment of optical lattices is quite difficult in principle,for several beams are required to hit the same atomic cloud.For the relatively near-detuned one-and two-dimensional lattices,the coarse alignment is accomplished by tuning the lattice laser onto resonance with the magnetic-optic trap(MOT) frequency,and then blowing away the MOT in real time.A more precision alignment is implemented at the end of the MOT loading,the atoms are first pumped into the lower hyperfine level by turning off the repumping for some time;then,the pulsed lattice beams are turned on for a short time at some reasonably large detuning.Finally,a fluorescent image of the MOT is taken without repumping,in order to detect only those atoms which are repumped by the lattice laser.For the purpose of controlling the detuning of the lattice easily and accurately,a home-made grating wavemeter with a resolution better than 1 GHz is used.This way allows the laser to be locked at any frequency by using a software PID and is experimentally simple to implement.The intensity of the lattice is controlled directly by pulsing the current through the tapered amplifier using a function generator and a laser diode driver.This technique has already been demonstrated before by Prof.M.Kasevich's group at Stanford. Our experiment starts with a MOT capturing approximately 4107 atoms in 200 ms.The lattice loading is overlap with the end of polarization gradient cooling(PGC),after that,the molasses laser beams are extinguished, and the adiabatic expansion is accomplished in the same time by a decrease in the lattice light intensity according to release function.On the basis of MOT and PGC,the dependences of atomic loading on such parameters as the intensity and frequency detuning of optical lattice are investigated experimentally.The vibration frequency is measured by intentionally modulating the trap intensity.Experimental results show that the lattice structure facilitates the cooling with the temperature of atoms cloud being reduced to 1/3 compared with free space polarization gradient cooling.The system design,experimental results and conclusions are of definite significance and can serve as a fine reference for other kinds of lattices designs or alkali atomic plans.
      通信作者: 颜树华, yanshuhua996@163.com
    • 基金项目: 国家自然科学基金(批准号:51275523)、高等学校博士学科点专项科研基金(批准号:20134307110009)、湖南省研究生科研创新项目(批准号:CX20158015)和国防科技大学优秀博士研究生创新资助项目(批准号:B150305)资助的课题.
      Corresponding author: Yan Shu-Hua, yanshuhua996@163.com
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51275523), the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20134307110009), the Graduate Innovative Research Fund of Hunan Province, China(Grant No. CX20158015), and the Excellent Graduate Innovative Fund of NUDT(Grant No. B150305).
    [1]

    Gibble K, Chu S 1993 Phys. Rev. Lett. 70 1771

    [2]

    Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619

    [3]

    Hardman K S, Kuhn C C N, McDonald G D, Debs J E, Bennetts S, Close J D, Robins N P 2014 Phys. Rev. A 89 023626

    [4]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849

    [5]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [6]

    Adams C S 1994 Contemp. Phys. 35 1

    [7]

    Monroe C 2002 Nature 416 238

    [8]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [9]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [10]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [11]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169

    [12]

    Ketterle W, Davis K B, Joffe M A, Martin A, Pritchard D E 1993 Phys. Rev. Lett. 70 2253

    [13]

    Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J, Foot C J 1996 Phys. Rev. A 53 1702

    [14]

    Cooper C J, Hillenbrand G, Rink J, Townsend C G, Zetie K, Foot C J 1994 Europhys. Lett. 28 397

    [15]

    Hillenbrand G, Burnett K, Foot C J 1995 Phys. Rev. A 52 4763

    [16]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [17]

    White J D, Scholten R E 2012 Rev. Sci. Instrum. 83 113104

    [18]

    Takase K, Stockton J K, Kasevich M A 2007 Opt. Lett. 32 2617

    [19]

    Kastberg A, Phillips W D, Rolston L, Spreeuw R J C 1995 Phys. Rev. Lett. 74 1542

    [20]

    Kerman A J 2002 Ph. D. Dissertation (Stanford:Stanford university)

    [21]

    Poulsen A S 2014 Ph. D. Dissertation(Houston:Rice Univeristy)

    [22]

    Kerman A J, Vuletic V, Chin C, Chu S 2000 Phys. Rev. Lett. 84 439

    [23]

    Winoto S L, DePue M T, Bramall N E, Weiss D S 1999 Phys. Rev. A 59 R19

  • [1]

    Gibble K, Chu S 1993 Phys. Rev. Lett. 70 1771

    [2]

    Santarelli G, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619

    [3]

    Hardman K S, Kuhn C C N, McDonald G D, Debs J E, Bennetts S, Close J D, Robins N P 2014 Phys. Rev. A 89 023626

    [4]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849

    [5]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046

    [6]

    Adams C S 1994 Contemp. Phys. 35 1

    [7]

    Monroe C 2002 Nature 416 238

    [8]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413

    [9]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [10]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969

    [11]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169

    [12]

    Ketterle W, Davis K B, Joffe M A, Martin A, Pritchard D E 1993 Phys. Rev. Lett. 70 2253

    [13]

    Townsend C G, Edwards N H, Zetie K P, Cooper C J, Rink J, Foot C J 1996 Phys. Rev. A 53 1702

    [14]

    Cooper C J, Hillenbrand G, Rink J, Townsend C G, Zetie K, Foot C J 1994 Europhys. Lett. 28 397

    [15]

    Hillenbrand G, Burnett K, Foot C J 1995 Phys. Rev. A 52 4763

    [16]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [17]

    White J D, Scholten R E 2012 Rev. Sci. Instrum. 83 113104

    [18]

    Takase K, Stockton J K, Kasevich M A 2007 Opt. Lett. 32 2617

    [19]

    Kastberg A, Phillips W D, Rolston L, Spreeuw R J C 1995 Phys. Rev. Lett. 74 1542

    [20]

    Kerman A J 2002 Ph. D. Dissertation (Stanford:Stanford university)

    [21]

    Poulsen A S 2014 Ph. D. Dissertation(Houston:Rice Univeristy)

    [22]

    Kerman A J, Vuletic V, Chin C, Chu S 2000 Phys. Rev. Lett. 84 439

    [23]

    Winoto S L, DePue M T, Bramall N E, Weiss D S 1999 Phys. Rev. A 59 R19

  • [1] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖. 基于空间光调制器构建二维任意形状的87Rb原子阵列. 物理学报, 2023, 72(6): 064201. doi: 10.7498/aps.72.20222096
    [2] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [4] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [5] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [6] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [7] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [9] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [10] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [11] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [12] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [13] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [14] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动. 物理学报, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [15] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波. 物理学报, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [20] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
计量
  • 文章访问数:  4961
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20
  • 修回日期:  2016-09-05
  • 刊出日期:  2017-01-05

/

返回文章
返回