搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱

张耘 王学维 柏红梅

引用本文:
Citation:

第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱

张耘, 王学维, 柏红梅

First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals

Zhang Yun, Wang Xue-Wei, Bai Hong-Mei
PDF
导出引用
  • 本文利用第一性原理研究了In:Mn:LiNbO3晶体及对比组的电子结构和光学特性.研究结果显示,掺锰铌酸锂晶体的杂质能级主要由Mn的3d态轨道贡献,在禁带中处于较浅的位置,在价带顶端也有所贡献,晶体带隙较纯铌酸锂晶体变窄;Mn:LiNbO3晶体分别在1.66,2.85 eV等位置形成了吸收峰;掺In的Mn:LiNbO3晶体在1.66 eV附近的吸收明显减弱,掺铟浓度约为阈值(约3 mol%)时在1.66 eV吸收继续减弱,并出现了一些新的光吸收峰.本文提出了1.66 eV的吸收与Mn2+离子相关,因掺铟离子而出现的2.13 eV的吸收与Mn3+离子相关,这两峰随着掺铟离子的增加将出现前者减弱而后者增强的变化,该变化可以用电荷在锰、铟离子间的转移解释;还提出在铟、锰共掺铌酸锂晶体中,若光存储的记录光选择低能段(1.66 eV附近),此时对应记录灵敏度要求较小的掺铟量等观点.
    The electronic structures and the absorption spectra of the indium and manganese codoped LiNbO3 crystals and their comparative groups are investigated by first-principles based on the density functional theory. The supercell crystal structures are established with 60 atoms, including four models:the near-stoichiometric pure LiNbO3 crystal (LN), the manganese doped LiNbO3 crystal (Mn:LN, charge compensation model as MnLi+-VLi+), the indium and manganese codoped LiNbO3 crystal (In:Mn:LN, charge compensation model as InLi2+-MnLi+-3VLi+), and the other indium and manganese codoped LiNbO3 crystal (In(E):Mn:LN, charge compensation model as InLi2+-InNb2--MnLi+-VLi+). The results show that the extrinsic defect levels within the forbidden band of Mn:LN crystal are mainly contributed by Mn 3d orbital electrons, which also affect the top of the valence band. The band gap of Mn:LN about 3.18 eV is narrower than that of LN; the band gaps of In:Mn:LN and In(E):Mn:LN sample are 2.82 and 2.93 eV respectively. The electron density of state (DOS) of manganese codoped LiNbO3 crystal shows that the orbits of Mn 3d, Nb 4d and O 2p superpose each other, i.e., forming covalent bonds, which result in conduction and valence bands shifting toward low energy. The indium ion does not contribute the extrinsic energy level within forbidden band, it affects the band gap through changing O2- electron cloud shape. The band gap narrows down if the indium ions occupy lithium ion positions, and becomes broad if the indium ions occupy niobium ion positions. It is found that the Mn:LN, In:Mn:LN and In(E):Mn:LN samples display the absorption peaks at 3.25, 3.11, 2.97, 2.85, 2.13 and 1.66 eV. The last absorption peak is contributed by the electron transferring from the Mn2+ energy level to conduction band, and the doping of indium ions leads to attenuation of this peak. The peak at 2.13 eV relates to the Mn3+, it is enhanced by the doped indium ions. The indium ions in crystal would influence the absorption, which relates to manganese ions, by transforming manganese ion valence via the formula as m Mn2++In3+→Mn3++In2+, that is, with the doping of the indium ions, the photorefractive center Mn2+ concentration decreases, which is responsible for the absorption peak at 1.66 eV. It must be mentioned that the Mn2+ possesses not only the shallow levels as mentioned previously, but also the deep ones which are responsible for the absorptions at 2.85 eV and other high energies. For the indium and manganese codoped LiNbO3 crystals, if the recording light is chosen at near 1.66 eV (748 nm), the relatively low concentration of indium ions is proposed to be chosen to achieve the high recording sensitivity.
      通信作者: 张耘, yzhang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274257)资助的课题.
      Corresponding author: Zhang Yun, yzhang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274257).
    [1]

    Ballman A A 2006 J. Am. Ceram. Soc. 48 112

    [2]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [3]

    Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655

    [4]

    Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]

    [5]

    Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964

    [6]

    Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158

    [7]

    Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008物理学报57 2946]

    [8]

    Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569

    [9]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [10]

    Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [11]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [12]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [13]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015物理学报64 124210]

    [14]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347

    [15]

    Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [16]

    Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543

    [17]

    Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280

    [18]

    Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231

    [19]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [20]

    White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547

    [21]

    Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125

    [22]

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]

    [23]

    Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686

    [24]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94

    [25]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149

    [26]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089

    [27]

    Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子物理学报28 944]

    [28]

    Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423

    [29]

    Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393

  • [1]

    Ballman A A 2006 J. Am. Ceram. Soc. 48 112

    [2]

    Buse K, Adibi A, Psaltis D 1998 Nature 393 665

    [3]

    Li M H, Zhao Y Q, Xu K B 1995 Chin. Sci. Bull. 41 655

    [4]

    Kong Y F, Xu J J, Zhang G Y 2005 Multifunctional Photovoltaic Material–Lithium Niobate Crystal (Beijing:Science Press) p263(in Chinese)[孔勇发, 许京军, 张光寅2005多功能光电材料––铌酸锂晶体(北京:科学出版社)第263页]

    [5]

    Liu D, Liu L, Liu Y, Zhou C, Xu L 2000 Appl. Phys. Lett. 77 2964

    [6]

    Yang Y P, Buse K, Psaltis D 2002 Opt. Lett. 27 158

    [7]

    Fu B, Zhang G Q, Liu X M, Shen Y, Xu Q J, Kong Y F 2008 Acta Phys. Sin. 57 2946 (in Chinese)[付博, 张国权, 刘祥明, 申岩, 徐庆君, 孔勇发2008物理学报57 2946]

    [8]

    Zhen X, Li Q, Xu Y 2005 Appl. Opt. 44 4569

    [9]

    Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013

    [10]

    Segall M D, Lindan P J D, Probert M J, Pickard J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [11]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [12]

    Tian F H, Liu C B 2006 J. Phys. Chem. B 110 17866

    [13]

    Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese)[赵佰强, 张耘, 邱晓燕, 王学维2015物理学报64 124210]

    [14]

    Wang W, Wang R, Zhang W, Xing L L, Xu Y L, Wu X H 2013 Phys. Chem. Chem. Phys. 15 14347

    [15]

    Zeng F, Sheng P, Tang S G, Pan F, Yan S W, Hu C F, Zou Y, Huang Y Y, Jiang Z, Guo D 2012 Mater. Chem. Phys. 136 783

    [16]

    Corradi G, Sothe H, Spaeth J M, Polgar K 1998 J. Phys. Condens. Matter 2 543

    [17]

    Kong Y F, Wen J, Wang H N 1995 Appl. Phys. Lett. 66 280

    [18]

    Lerner P, Legras C, Dumas J P 1968 J. Cryst. Growth 3 231

    [19]

    Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401

    [20]

    White R T, Mckinnie I T, Butterworth S D, Baxter G W, Warrington D M, Smith P G R 2003 Appl. Phys. B 77 547

    [21]

    Mamoun S, Merad A E, Guilbert L 2013 J. Comput. Mater. Sci. 79 125

    [22]

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Vol. 2)(Beijing:Science Press) p76(in Chinese)[沈学础2002半导体光谱和光学性质(第二版) (北京:科学出版社)第76页]

    [23]

    Liu Y, Kitamura K, Takekawa S 2002 Appl. Phys. Lett. 81 2686

    [24]

    Bae S I, Ichikawa J, Shimamura K, Onodera H, Fukuda T 1997 J. Cryst. Growth 180 94

    [25]

    Yang Y P, Psaltis D, Luennemann M, Berben D, Hartwig U, Buse K 2003 J. Opt. Soc. Am. B 20 149

    [26]

    Hesselink L, Orlov S S, Liu A, Akella A, Lande D, Neurgaonkar R R 1998 Science 282 1089

    [27]

    Lei X W, Lin Z, Zhao H 2011 J. Atomic and Molecular Phys. 28 944 (in Chinese)[雷晓蔚, 林竹, 赵辉2011原子与分子物理学报28 944]

    [28]

    Liu D, Liu L, Zhou C, Zhang J, Xu L 2002 Microwave Opt. Technol. Lett. 32 423

    [29]

    Zhang G, Tomita Y, Zhang X, Sunarno S 2002 Appl. Phys. Lett. 81 1393

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 吴圣钰, 张耘, 柏红梅, 梁金玲. Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究. 物理学报, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [5] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [6] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响. 物理学报, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [8] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [10] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [11] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [12] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [13] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [17] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [18] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [19] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [20] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
计量
  • 文章访问数:  5356
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-08
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-01-20

/

返回文章
返回