搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于迭代重建算法的X射线光栅相位CT成像

戚俊成 陈荣昌 刘宾 陈平 杜国浩 肖体乔

引用本文:
Citation:

基于迭代重建算法的X射线光栅相位CT成像

戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔

Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm

Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao
PDF
导出引用
  • 基于光栅干涉仪的X射线成像技术可以同时获得样品内部的吸收信息、相位信息和散射信息,既保持了传统X射线衰减成像的优点,又拥有相衬成像和散射成像的优势.然而基于传统CT重建算法的X射线光栅成像需要采集大量完整的原始投影数据,数据采集时间过长从而使得物体接受很大的辐射剂量,难以在实际中应用.提出基于传统代数迭代重建算法的光栅成像技术.该方法利用现有X射线光栅成像系统采集少量原始投影数据,基于传统代数迭代重建算法,对旋转变化的相位数据进行CT重构,同时基于傅里叶变换的方法对微分相位数据进行相位恢复.模拟和实验结果表明,基于少量或不完备的原始投影数据,该方法能够准确重构成像对象的吸收、相位和散射三维信息,同时还能对微分相位切片进行高信噪比的相位恢复,得到样品折射率实部衰减率,为X射线光栅成像技术在工业、生物和医学诊断等领域的应用提供理论和技术支撑.
    Grating based X-ray imaging technology is a coherent imaging technique that bears tremendous potential in three-dimensional tomographic imaging of weak absorption contrast specimens. Three kinds of contrast information including absorption, phase and scattering can be retrieved separately based on a single set of raw projections. However, the grating based X-ray imaging with the conventional phase-retrieval method using the conventional phase-stepping approach and filtered back projection (FBP) reconstruction algorithm require large amounts of raw data, so that long exposure time and large amounts of radiation dose is accepted by the sample. According to the traditional grating based X-ray imaging system, we propose a low dose, fast, multi-contrast CT reconstruction approach based on the iterative reconstruction algorithm that optimizes dose efficiency but does not share the main limitations of other reported methods. Prior to reconstruction, firstly, the projections are acquired with the phase stepping approach and multi-contrast projections are retrieved from the raw data by conventional retrieval algorithm. Then the rotational variable differential phase projections are converted to rotational invariable projections by means of decomposing the differential phase projections into the rotational invariable projections in two mutually perpendicular derivative directions via the transformation of coordinates. Finally, the absorption, phase and scattering information are reconstructed with the iterative reconstruction algorithm and the phase is retrieved based on the fast Fourier transform (FFT). We validated and assessed the phase reconstruction approach with a numerical simulation on a phase Shepp-Logan phantom. The experiment was performed at the X-ray imaging and biomedical application beam line (BL-13W) in the Shanghai Synchrotron Radiation Facility (SSRF) where 20 keV X-ray from a Si(111) monochromator is emitted. The X-ray interferometer was positioned at 34 m from the Wiggler source. The images were recorded with a scintillator/lens-coupled CCD camera with 2048 pixel2048 pixel resolution and an effective pixel size of 9 m. The numerical tests and the experimental results demonstrate that, for the small radiation dose deposited in the sample, the iterative reconstruction algorithm provides phase reconstructions of better quality and higher signal to noise ratio than the conventional FBP reconstruction algorithm, and also provides the multi-contrast 3D images, including absorption image, phase image and scattering image. This development is of particular interest for applications where the samples need inspecting under low dose and high speed conditions, and will play an important role in the nondestructive and quantitative imaging in the industry, biomedical and medical diagnosis fields.
      通信作者: 戚俊成, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn ; 肖体乔, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11375257,61301259,U1232205)、中北大学校学科研究基金(批准号:2015110246)和山西省自然科学基金(批准号:2015021099)资助的课题.
      Corresponding author: Qi Jun-Cheng, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn ; Xiao Ti-Qiao, qijuncheng@nuc.edu.cn;tqxiao@sinap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375257, 61301259, U1232205), the Foundation of North University of China (Grant No. 2015110246), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021099).
    [1]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134

    [2]

    Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540

    [3]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932

    [4]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576

    [5]

    Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103

    [6]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101

    [7]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199

    [8]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [9]

    Talbot H F 1936Philos.Mag 9 401

    [10]

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]

    [11]

    Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7

    [12]

    Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352

    [13]

    Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101

    [14]

    Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014物理学报63 058701]

    [15]

    Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175

    [16]

    Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7

    [17]

    Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]

    [18]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014物理学报63 104202]

  • [1]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brnnimann C, Grnzweig C, David C 2008Nat.Mat. 7 134

    [2]

    Momose A, Yashiro W, Maikusa H, Takeda Y 2009Opt.Express 17 12540

    [3]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010Opt.Express 35 1932

    [4]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010Proc.Natl.Acad.Sci. 107 13576

    [5]

    Jensen T H, Bech M, Zanette I, Weitkamp T, David C, Deyhle H, Rutishauser S, Reznikova E, Mohr J, Feidenhans'l R, Pfeiffer F 2010Phys.Rev.B 82 214103

    [6]

    Zanette I, Bech M, Pfeiffer F, Weitkamp T 2011Appl.Phys.Lett. 98 094101

    [7]

    Zanette I, Bech M, Rack A, Le Duc G, Tafforeau P, David C, Mohr J, Pfeiffer F, Weitkamp T 2012Proc.Natl.Acad.Sci. 109 10199

    [8]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008Acta Phys.Sin. 57 1576(in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [9]

    Talbot H F 1936Philos.Mag 9 401

    [10]

    Qi J C, Ren Y Q, Du G H, Chen R C, Wang Y D, He Y, Xiao T Q 2013Acta Opt.Sin. 33 1034001(in Chinese)[戚俊成, 任玉琦, 杜国浩, 陈荣昌, 王玉丹, 和友, 肖体乔2013光学学报33 1034001]

    [11]

    Bech M, Jensen T H, Bunk O, Donath T, David C, Weitkamp T, Le Duc G, Bravin A, Cloetens P, Pfeiffer F 2010Zeitschrift Fur Medizinische Physik 20 7

    [12]

    Momose A, Kawamoto S, Koyama I, Suzuki Y 2004Developments in X-Ray Tomography IV 5535 352

    [13]

    Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D, Wu Z Y 2005Appl.Phys.Lett. 87 264101

    [14]

    Yang F Q, Zhang D H, Huang K D Wang K, Xu Z 2014Acta Phys.Sin. 63 058701(in Chinese)[杨富强, 张定华, 黄魁东, 王鹍, 徐哲2014物理学报63 058701]

    [15]

    Kottler C, David C, Pfeiffer F, Bunk O 2007Opt.Express 15 1175

    [16]

    Arnison M R, Larkin K G, Sheppard C J R, Smith N I, Cogswell C J 2004J Microsc. 214 7

    [17]

    Xiao T Q, Xie H L, Deng B, Du G H, Chen R C 2014Acta Opt.Sin. 34 0100001(in Chinese)[肖体乔, 谢红兰, 邓彪, 杜国浩, 陈荣昌2014光学学报34 0100001]

    [18]

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014Acta Phys.Sin. 63 104202(in Chinese)[戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔2014物理学报63 104202]

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240050
    [2] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [3] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [4] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [5] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [6] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [7] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [8] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [9] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [10] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [11] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [12] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [14] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [15] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [17] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [18] 刘慧强, 任玉琦, 周光照, 和友, 薛艳玲, 肖体乔. 相移吸收二元性算法用于X射线混合衬度定量显微CT的可行性研究. 物理学报, 2012, 61(7): 078701. doi: 10.7498/aps.61.078701
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  6149
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-18
  • 修回日期:  2016-12-05
  • 刊出日期:  2017-03-05

/

返回文章
返回