搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kramers-Kronig关系建立金属太赫兹色散模型

牟媛 吴振森 张耿 高艳卿 阳志强

引用本文:
Citation:

基于Kramers-Kronig关系建立金属太赫兹色散模型

牟媛, 吴振森, 张耿, 高艳卿, 阳志强

Establishment of THz dispersion model of metals based on Kramers-Kronig relation

Mou Yuan, Wu Zhen-Sen, Zhang Geng, Gao Yan-Qing, Yang Zhi-Qiang
PDF
导出引用
  • 提出了一种基于测量反射率谱、使用Kramers-Kronig(KK)关系建立金属太赫兹色散模型的方法.结合合金铝和合金铜4-40 THz的测量反射率谱,通过反射系数振幅和相位的KK关系,采用高频端指数外推,低频端常数外推的方法,反演金属复折射率.以KK反演的复折射率作为实验值,以拟合复折射率和实验值误差最小为准则,使用遗传优化算法,拟合了合金铝和合金铜的Drude色散参数(等离子频率和碰撞频率).基于优化的Drude模型计算了0.1-40 THz材料的复折射率,与椭偏仪的实测结果符合,验证了模型的准确性.该方法理论与实验相互验证,以测量的复折射率作为实验定标,将远红外频段的色散信息拓展到太赫兹频域,确定了太赫兹频段金属的微观物理参数,提供了太赫兹频段色散和散射机理的研究依据.
    The extraction of terahertz dispersion parameters is confined in a limited region due to the limitation of the existing THz techniques. A method of studying the dispersion model of metals from the measurements of reflection spectrum and analysis of Kramers-Kronig (KK) relation is proposed. The reflection spectrum is measured by Vertex 80V Fourier transform spectrometer. In order to eliminate the signal noise of measured reflection spectrum, the measured spectrum is smoothed by Drude estimation. Using the smoothed reflection spectra of copper (Cu) alloy and aluminum (Al) alloy in a range of 440 THz, the complex refractivities are inversed based on the KK relation of amplitude and phase of reflective coefficient. The constant extrapolations at lower frequencies and the exponential extrapolation at higher frequencies are adopted in the KK integration. The exponential extrapolation index is adjusted according to the calibrating complex refractivity measured from far-infrared ellipsometer. According to the inversed complex refractivity, the plasma frequency and damping frequency in Drude model are optimized using the genetic algorithm. The objective function is defined as the error between the fitted complex refractivity and KK inversion. Since the optimal plasma frequency and damping frequency are different for different fitting frequencies, the obtained Drude parameters are averaged in order to reduce the influences of errors from KK inversion, measured reflection spectrum and calibrations. The complex refractivity indexes in a range from 15 THz to 40 THz, calculated by the established Drude model, are in good agreement with the measured calibrations from ellipsometer, which demonstrates the accuracy of the established Drude dispersion model. The reflection spectra below 4 THz are greatly distorted due to the signal noise, and the calibrating refractivity is located in the far infrared region, thus the complex refractivity is inversed in a region of 440 THz by KK algorithm. The complex refractivity indexes in a range of 0.120 THz, obtained by the proposed scheme, are for the vacancy, which will provide great support for the dispersion analysis in the whole terahertz gap. The procedures are helpful for extrapolating the dispersion information to terahertz band from the far infrared region. The scheme takes the advantage of the spectrometer and ellipsometer, and it requires high experimental precisions of reflection spectrum and calibrating refractivity. In addition, the scheme is adaptive to both metals and nonmetals by applying proper dispersion model which depends on the property of the reflection spectrum. The established model determines the microscopic dispersion parameters of material, which provides great support for the investigation of terahertz dispersion analysis, scattering mechanisms and imaging processes.
      通信作者: 吴振森, wuzhs@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61571355)资助的课题.
      Corresponding author: Wu Zhen-Sen, wuzhs@mail.xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571355).
    [1]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antenn. Propag. Mag. 51 39

    [2]

    Piesiewicz R, Jansen C, Mittleman D, Kleine-Ostmann T, Koch M, Krner T 2007 IEEE Trans. Antenn. Propag. 55 3002

    [3]

    Chen Q 2012 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [陈琦 2012 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [4]

    Wang L, Zhou Q 2007 Coll. Phys. 26 48 (in Chinese) [王磊, 周庆 2007 大学物理 26 48]

    [5]

    Su J, Sun C, Wang X Q 2013 Optron. Lasers 24 408 (in Chinese) [苏杰, 孙诚, 王晓秋 2013 光电子激光 24 408]

    [6]

    Ordal M A, Bell R J, Alexander Jr R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493

    [7]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

    [8]

    Loewenstein E V, Smith D R, Morgan R L 1973 Appl. Opt. 12 398

    [9]

    Ohba T, Ikawa S I 1988 J. Appl. Phys. 64 4141

    [10]

    Spitzer W G, Miller R C, Kleinman D A, Howarth L E 1962 Phys. Rev. 126 1710

    [11]

    Spitzer W G, Kleinman D A 1961 Phys. Rev. 121 1324

    [12]

    Hass M, Henvis B W 1962 J. Phys. Chem. Solids 23 1099

    [13]

    Wills K, Knezevic I, Hagness S C 2013 Radio Science Meeting (Joint with AP-S Symposium) USNC-URSI Orlando, USA, July 7-13, 2013 p154

    [14]

    Willis K J, Hagness S C, Knezevic I 2011 J. Appl. Phys. 110 063714

    [15]

    Lucyszyn S 2004 IEEE Proc. -Microw. Antenn. Propag. 151 321

    [16]

    Ordal M A, Bell R J, Alexander Jr R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [17]

    Silfsten P, Kontturi V, Ervasti T, Ketolainen J, Peiponen K E 2011 Opt. Lett. 36 778

    [18]

    Duvillaret L, Garet F, Coutaz J L 1996 IEEE J. Sel. Top. Quantum Electron 2 739

    [19]

    Yamashita T, Suga M, Okada T, Irisawa A, Imamura M 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hong Kong, China, August 23-28, 2015 p1

    [20]

    Kirley M P, Booske J H 2015 IEEE Trans. THz Sci. Technol. 5 1012

    [21]

    Mou Y, Wu Z S, Gao Y Q, Yang Z Q, Yang Q J 2017 Infrared Phys. Technol. 80 58

    [22]

    Cheng X H, Tang L G, Chen Z T, Gong M, Yu T J, Zhang G Y, Shi R Y 2008 Acta Phys. Sin. 57 5875 (in Chinese) [程兴华, 唐龙谷, 陈志涛, 龚敏, 于彤军, 张国义, 石瑞英 2008 物理学报 57 5875]

    [23]

    Lucarini V, Peiponen K E, Saarinen J J, Vartiainen E M 2005 Kramers-Kronig Relations in Optical Materials Research (New York: Springer Berlin Heidelberg) pp27-50

    [24]

    Wang R J, Deng B, Wang H Q, Qin Y L 2014 Acta Phys. Sin. 63 134102 (in Chinese) [王瑞君, 邓斌, 王宏强, 秦玉亮 2014 物理学报 63 134102]

  • [1]

    Li Z, Cui T J, Zhong X J, Tao Y B, Lin H 2009 IEEE Antenn. Propag. Mag. 51 39

    [2]

    Piesiewicz R, Jansen C, Mittleman D, Kleine-Ostmann T, Koch M, Krner T 2007 IEEE Trans. Antenn. Propag. 55 3002

    [3]

    Chen Q 2012 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [陈琦 2012 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [4]

    Wang L, Zhou Q 2007 Coll. Phys. 26 48 (in Chinese) [王磊, 周庆 2007 大学物理 26 48]

    [5]

    Su J, Sun C, Wang X Q 2013 Optron. Lasers 24 408 (in Chinese) [苏杰, 孙诚, 王晓秋 2013 光电子激光 24 408]

    [6]

    Ordal M A, Bell R J, Alexander Jr R W, Long L L, Querry M R 1985 Appl. Opt. 24 4493

    [7]

    Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander Jr R W, Ward C A 1983 Appl. Opt. 22 1099

    [8]

    Loewenstein E V, Smith D R, Morgan R L 1973 Appl. Opt. 12 398

    [9]

    Ohba T, Ikawa S I 1988 J. Appl. Phys. 64 4141

    [10]

    Spitzer W G, Miller R C, Kleinman D A, Howarth L E 1962 Phys. Rev. 126 1710

    [11]

    Spitzer W G, Kleinman D A 1961 Phys. Rev. 121 1324

    [12]

    Hass M, Henvis B W 1962 J. Phys. Chem. Solids 23 1099

    [13]

    Wills K, Knezevic I, Hagness S C 2013 Radio Science Meeting (Joint with AP-S Symposium) USNC-URSI Orlando, USA, July 7-13, 2013 p154

    [14]

    Willis K J, Hagness S C, Knezevic I 2011 J. Appl. Phys. 110 063714

    [15]

    Lucyszyn S 2004 IEEE Proc. -Microw. Antenn. Propag. 151 321

    [16]

    Ordal M A, Bell R J, Alexander Jr R W, Newquist L A, Querry M R 1988 Appl. Opt. 27 1203

    [17]

    Silfsten P, Kontturi V, Ervasti T, Ketolainen J, Peiponen K E 2011 Opt. Lett. 36 778

    [18]

    Duvillaret L, Garet F, Coutaz J L 1996 IEEE J. Sel. Top. Quantum Electron 2 739

    [19]

    Yamashita T, Suga M, Okada T, Irisawa A, Imamura M 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hong Kong, China, August 23-28, 2015 p1

    [20]

    Kirley M P, Booske J H 2015 IEEE Trans. THz Sci. Technol. 5 1012

    [21]

    Mou Y, Wu Z S, Gao Y Q, Yang Z Q, Yang Q J 2017 Infrared Phys. Technol. 80 58

    [22]

    Cheng X H, Tang L G, Chen Z T, Gong M, Yu T J, Zhang G Y, Shi R Y 2008 Acta Phys. Sin. 57 5875 (in Chinese) [程兴华, 唐龙谷, 陈志涛, 龚敏, 于彤军, 张国义, 石瑞英 2008 物理学报 57 5875]

    [23]

    Lucarini V, Peiponen K E, Saarinen J J, Vartiainen E M 2005 Kramers-Kronig Relations in Optical Materials Research (New York: Springer Berlin Heidelberg) pp27-50

    [24]

    Wang R J, Deng B, Wang H Q, Qin Y L 2014 Acta Phys. Sin. 63 134102 (in Chinese) [王瑞君, 邓斌, 王宏强, 秦玉亮 2014 物理学报 63 134102]

  • [1] 王杨涛, 景蔚萱, 韩枫, 孟庆之, 林启敬, 赵立波, 蒋庄德. 圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究. 物理学报, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [2] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [7] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [14] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [15] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [16] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算. 物理学报, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [17] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [18] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析. 物理学报, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [19] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] 刘显明, 李斌成, 高卫东, 韩艳玲. 离子注入硅片快速退火后的红外椭偏光谱研究. 物理学报, 2010, 59(3): 1632-1637. doi: 10.7498/aps.59.1632
计量
  • 文章访问数:  6794
  • PDF下载量:  433
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 修回日期:  2017-03-30
  • 刊出日期:  2017-06-05

/

返回文章
返回