搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析

郭海君 段宝兴 袁嵩 谢慎隆 杨银堂

引用本文:
Citation:

具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析

郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂

Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer

Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang
PDF
导出引用
  • 为了优化传统AlGaN/GaN高电子迁移率晶体管(high electron mobility transistors,HEMTs)器件的表面电场,提高击穿电压,本文提出了一种具有部分本征GaN帽层的新型AlGaN/GaN HEMTs器件结构.新型结构通过在AlGaN势垒层顶部、栅电极到漏电极的漂移区之间引入部分本征GaN帽层,由于本征GaN帽层和AlGaN势垒层界面处的极化效应,降低了沟道二维电子气(two dimensional electron gas,2DEG)的浓度,形成了栅边缘低浓度2DEG区域,使得沟道2DEG浓度分区,由均匀分布变为阶梯分布.通过调制沟道2DEG的浓度分布,从而调制了AlGaN/GaN HEMTs器件的表面电场.利用电场调制效应,产生了新的电场峰,且有效降低了栅边缘的高峰电场,AlGaN/GaN HEMTs器件的表面电场分布更加均匀.利用ISE-TCAD软件仿真分析得出:通过设计一定厚度和长度的本征GaN帽层,AlGaN/GaN HEMTs器件的击穿电压从传统结构的427 V提高到新型结构的960 V.由于沟道2DEG浓度减小,沟道电阻增加,使得新型AlGaN/GaN HEMTs器件的最大输出电流减小了9.2%,截止频率几乎保持不变,而最大振荡频率提高了12%.
    In order to reduce the high electric field peak near the gate edge and optimize the non-uniform surface electric field distribution of conventional AlGaN/GaN high electron mobility transistor (HEMT), a novel AlGaN/GaN HEMT with a partial GaN cap layer is proposed in this paper. The partial GaN cap layer is introduced at the top of the AlGaN barrier layer and is located from the gate to the drain drift region. A negative polarization charge at the upper hetero-junction interface is induced, owing to the polarization effect at the GaN cap layer and AlGaN barrier layer interface. Hence, the two dimensional electron gas (2DEG) density is reduced. The low-density 2DEG region near the gate edge is formed, which turns the uniform distribution into a gradient distribution. The concentration distribution of 2DEG is modified. Therefore, the surface electric field distribution of AlGaN/GaN HEMT is modulated. By the electric field modulation effect, a new electric field peak is produced and the high electric field peak near the gate edge of the drain side is effectively reduced. The surface electric field of AlGaN/GaN HEMT is more uniformly redistributed in the drift region. In virtue of ISE-TCAD simulation software, the equipotential and the surface electric field distribution of AlGaN/GaN HEMT are obtained. For the novel AlGaN/GaN HEMT employing a partial GaN cap layer, the 2DEG is completely depleted from the gate to the drain electrodes, arising from the low-density 2DEG near the gate edge, while the 2DEG is partly depleted for the conventional AlGaN/GaN HEMT. The surface electric field distribution of the conventional structure is compared with the one of the novel structures with partial GaN cap layers of different lengths at a fixed thickness of 228 nm. With increasing length, the new electric field peak increases and shifts toward the drain electrode, and the high electric field peak on the drain side of the gate edge is reduced. Moreover, the breakdown voltage dependence on the length and thickness of the partial GaN cap layer is achieved. The simulation results exhibit that the breakdown voltage can be improved to 960 V compared with 427 V of the conventional AlGaN/GaN HEMT under the optimum conditions. The threshold voltage of AlGaN/GaN HEMT remains unchanged. The maximum output current of AlGaN/GaN HEMT is reduced by 9.2% and the specific on-resistance is increased by 11% due to a 2DEG density reduction. The cut-off frequency keeps constant and the maximum oscillation frequency shows an improvement of 12% resulting from the increased output resistance. The results demonstrate that the proposed AlGaN/GaN HEMT is an attractive candidate in realizing the high-voltage operation of GaN-based power device.
      通信作者: 段宝兴, bxduan@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339900,2015CB351900)和国家自然科学基金重点项目(批准号:61234006,61334002)资助的课题.
      Corresponding author: Duan Bao-Xing, bxduan@163.com
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339900, 2015CB351900) and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    Tham W H, Ang D S, Bera L K, Dolmanan S B, Bhat T N, Lin V K, Tripathy S 2016 IEEE Trans. Electron. Dev. 63 345

    [2]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [3]

    Yu E T, Dang X Z, Asbeck P M, Lau S S, Sullivan G J 1999 J. Vac. Sci. Technol. B 17 1742

    [4]

    Huang X, Liu Z, Li Q, Lee F C 2014 IEEE Trans. Power Electron. 29 2453

    [5]

    Karmalkar S, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 1515

    [6]

    Okamoto Y, Ando Y, Nakayama T, Hataya K, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N, Kuzuhara M 2004 IEEE Trans. Electron. Dev. 51 2217

    [7]

    Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I, Ogura T 2005 IEEE Trans. Electron. Dev. 52 106

    [8]

    Wong J, Shinohara K, Corrion A L, Brown D F, Carlos Z, Williams A, Tang Y, Robinson J F, Khalaf I, Fung H, Schmitz A, Oh T, Kim S, Chen S, Burnham S, Margomenos A, Micovic M 2017 IEEE Electron Dev. Lett. 38 95

    [9]

    Karmalkar S, Deng J, Shur M S 2001 IEEE Electron Dev. Lett. 22 373

    [10]

    Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y 2013 IEEE Trans. Electron. Dev. 60 1046

    [11]

    Song D, Liu J, Cheng Z, Tang W C W, Lau K M, Chen K J 2007 IEEE Electron Dev. Lett. 28 189

    [12]

    Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S 2007 J. Cryst. Growth 298 831

    [13]

    Polyakov A Y, Smirnov N B, Govorkov A V, Yugova T G, Markov A V, Dabiran A M, Wowchak A M, Cui B, Xie J, Osinsky A V, Chow P P, Pearton S J 2008 Appl. Phys. Lett. 92 042110

    [14]

    Hirose M, Takada Y, Tsuda K 2012 Phys. Stat. Sol. C 9 361

    [15]

    Treidel E B, Hilt O, Brunner F, Wrfl J, Tränkle G 2008 IEEE Trans. Electron. Dev. 55 3354

    [16]

    Udrea F, Popescu A, Milne W I 1998 Electron. Lett. 34 808

    [17]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [18]

    Duan B X, Yang Y T 2012 Sci. China:Inf. Sci. 55 473

    [19]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [20]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 247302(in Chinese)[段宝兴, 杨银堂, 陈敬2012物理学报61 247302]

    [21]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese)[段宝兴, 杨银堂2014物理学报63 057302]

    [22]

    Heikman S, Keller S, Wu Y, Speck J S, Denbaars S P, Mishra U K 2003 J. Appl. Phys. 93 10114

    [23]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York:Springer) pp1-2

  • [1]

    Tham W H, Ang D S, Bera L K, Dolmanan S B, Bhat T N, Lin V K, Tripathy S 2016 IEEE Trans. Electron. Dev. 63 345

    [2]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [3]

    Yu E T, Dang X Z, Asbeck P M, Lau S S, Sullivan G J 1999 J. Vac. Sci. Technol. B 17 1742

    [4]

    Huang X, Liu Z, Li Q, Lee F C 2014 IEEE Trans. Power Electron. 29 2453

    [5]

    Karmalkar S, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 1515

    [6]

    Okamoto Y, Ando Y, Nakayama T, Hataya K, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N, Kuzuhara M 2004 IEEE Trans. Electron. Dev. 51 2217

    [7]

    Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I, Ogura T 2005 IEEE Trans. Electron. Dev. 52 106

    [8]

    Wong J, Shinohara K, Corrion A L, Brown D F, Carlos Z, Williams A, Tang Y, Robinson J F, Khalaf I, Fung H, Schmitz A, Oh T, Kim S, Chen S, Burnham S, Margomenos A, Micovic M 2017 IEEE Electron Dev. Lett. 38 95

    [9]

    Karmalkar S, Deng J, Shur M S 2001 IEEE Electron Dev. Lett. 22 373

    [10]

    Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y 2013 IEEE Trans. Electron. Dev. 60 1046

    [11]

    Song D, Liu J, Cheng Z, Tang W C W, Lau K M, Chen K J 2007 IEEE Electron Dev. Lett. 28 189

    [12]

    Kato S, Satoh Y, Sasaki H, Masayuki I, Yoshida S 2007 J. Cryst. Growth 298 831

    [13]

    Polyakov A Y, Smirnov N B, Govorkov A V, Yugova T G, Markov A V, Dabiran A M, Wowchak A M, Cui B, Xie J, Osinsky A V, Chow P P, Pearton S J 2008 Appl. Phys. Lett. 92 042110

    [14]

    Hirose M, Takada Y, Tsuda K 2012 Phys. Stat. Sol. C 9 361

    [15]

    Treidel E B, Hilt O, Brunner F, Wrfl J, Tränkle G 2008 IEEE Trans. Electron. Dev. 55 3354

    [16]

    Udrea F, Popescu A, Milne W I 1998 Electron. Lett. 34 808

    [17]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [18]

    Duan B X, Yang Y T 2012 Sci. China:Inf. Sci. 55 473

    [19]

    Duan B X, Yang Y T 2012 Chin. Phys. B 21 057201

    [20]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 247302(in Chinese)[段宝兴, 杨银堂, 陈敬2012物理学报61 247302]

    [21]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese)[段宝兴, 杨银堂2014物理学报63 057302]

    [22]

    Heikman S, Keller S, Wu Y, Speck J S, Denbaars S P, Mishra U K 2003 J. Appl. Phys. 93 10114

    [23]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York:Springer) pp1-2

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究. 物理学报, 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响. 物理学报, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究. 物理学报, 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [9] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理. 物理学报, 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [10] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [11] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [12] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [13] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [14] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [15] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [16] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [19] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  5580
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-08-05

/

返回文章
返回