搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响

史茂雷 刘磊 田芳慧 王鹏飞 李嘉俊 马蕾

引用本文:
Citation:

无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响

史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾

Effect of lithium-free flux B2O3 on the ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte

Shi Mao-Lei, Liu Lei, Tian Fang-Hui, Wang Peng-Fei, Li Jia-Jun, Ma Lei
PDF
导出引用
  • 采用固相法制备锂离子电池用固体电解质磷酸钛锂铝Li1.3Al0.3Ti1.7(PO4)3(LATP),研究了不同烧结温度以及助熔剂对LATP固体电解质离子电导率的影响.采用X射线衍射、能谱分析、扫描电镜和交流阻抗等方法,研究样品的结构特征、元素含量、形貌特征以及离子导电性能.结果表明,在900℃烧结可以获得结构致密、离子电导率较高的纯相LATP陶瓷固体电解质.与添加助熔剂LiBO2的样品进行对比实验发现,采用B2O3代替LiBO2作为助熔剂也可以提高烧结样品的离子电导率,并且电解质的离子电导率随助熔剂添加量的增大,先增大后减小,其中添加质量百分比为2%的B2O3的样品具有最高的室温离子电导率,为1.6110-3 S/cm.
    Using solid electrolyte instead of liquid electrolyte is regarded as an important measure to solve the safety problems of lithium ion batteries, and has attracted wide attention of researchers. Among many solid electrolytes, Li1.3Al0.3Ti1.7(PO4)3 (LATP) is considered to be one of the most commercially available solid electrolytes for its high ionic conductivity. However, as a replacement substitute of for liquid electrolyte, the LATP solid electrolyte has an ionic transport property of LATP solid electrolyte that still needs to be improved. In this paper, LATP solid electrolyte used for lithium ion batteries is successfully prepared by solid reaction process, and the influences of different sintering temperatures and addition of flux B2O3 and or LiBO2 on the ionic conductivity of LATP solid electrolyte are discussed. The structures, element content, morphologies, and ionic conductivities of the sintered samples are investigated at room temperature by X-ray diffraction, energy dispersive spectrometer, electrochemical impedance spectrum and scanning electron microscopy. It is found that pure phase LATP ceramic solid electrolyte can be obtained at the sintering temperatures between 800 and 1000℃. And the ionic conductivities of the samples first increase first and then decrease with the increasing sintering temperatures increasing. The sample with a highest ionic conductivity of 4.1610-4 S/cm can be obtained at the a sintering temperature of 900℃. Further research shows that the ionic conductivities of the sintered samples can also be effectively improved by using B2O3 instead of LiBO2 as flux. Moreover, the ionic conductivities of the samples first increase first and then decrease with the increasing amount of the flux increasing. And the highest ionic conductivity of 1.6110-3 S/cm is obtained with the sampleby adding B2O3 with a mass fraction of 2% into the sample. The results indicate that the elevating of sintering temperature and the adding of flux B2O3 and or LiBO2 can both decreasing reducing the grain boundary impedances of the LATP samples, so as to thereby improve improving their ionic conductivities. However, when the sintering temperature is higher than 900℃ or the amount of flux B2O3 and or LiBO2 exceeds the mass percentage of 2%, the ionic conductivities of the LATP samples will drop. In addition, the ionic conductivities of the samples used using B2O3 as flux are higher than that those of the samples used LiBO2 as flux. These results also indicate that the increases of ionic conductivities of LATP samples with flux is are closely related to their densities density and compactness, and is irrespective of no matter whether or not the flux contains lithium ion.
      通信作者: 刘磊, thesisliu@163.com
    • 基金项目: 国家自然科学基金(批准号:61204079)、河北省自然科学基金(批准号:F2017201130)和河北省青年拔尖人才计划资助的课题.
      Corresponding author: Liu Lei, thesisliu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204079), the Natural Science Foundation of Hebei Province, China (Grant No. F2017201130), and the Youth Outstanding Talent Project of Hebei Province, China
    [1]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473

    [2]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [3]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6

    [4]

    Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]

    [5]

    Fu J 1997 Solid State Ionics 96 195

    [6]

    Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759

    [7]

    Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015物理学报64 077302]

    [8]

    Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128

    [9]

    Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77

    [10]

    Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945

    [11]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49

    [12]

    Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]

    [13]

    Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]

    [14]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [15]

    Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653

    [16]

    Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847

    [17]

    Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801

    [18]

    Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90

    [19]

    Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]

    [20]

    Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755

    [21]

    Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]

    [22]

    Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339

    [23]

    Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149

    [24]

    Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216

    [25]

    Thevenin J 1985 J. Power Sources 14 45

    [26]

    Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477

    [27]

    Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870

    [28]

    He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]

    [29]

    Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]

    [30]

    Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]

    [31]

    Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014物理学报63 168201]

    [32]

    Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]

    [33]

    Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015物理学报64 248201]

    [34]

    Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97

    [35]

    Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646

    [36]

    Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334

    [37]

    Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611

    [38]

    Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]

  • [1]

    Han F, Gao T, Zhu Y, Gaskell K J, Wang C 2015 Adv. Mater. 27 3473

    [2]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [3]

    Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H 2016 Inorg. Chem. 55 6

    [4]

    Zheng H H, Qu Q T, Liu Y W, Xu Z Y 2007 Chin. J. Power Sources 31 349 (in Chinese)[郑洪河, 曲群婷, 刘云伟, 徐仲榆2007电源技术31 349]

    [5]

    Fu J 1997 Solid State Ionics 96 195

    [6]

    Matsuo T, Shibasaki M, Katsumata T 2002 Solid State Ionics 154 759

    [7]

    Guo W H, Xiao H, Men C L 2015 Acta Phys. Sin. 64 077302 (in Chinese)[郭文昊, 肖惠, 门传玲2015物理学报64 077302]

    [8]

    Shimonishi Y, Tao Z, Imanishi N, Im D, Dong J L, Hirano A, Takeda Y, Yamamoto O, Sammes N 2011 J. Power Sources 196 5128

    [9]

    Bucharsky E C, Schell K G, Hintennach A, Hoffmann M J 2015 Solid State Ionics 274 77

    [10]

    Kotobuki M, Koishi M, Kato Y 2013 Ionics 19 1945

    [11]

    Schroeder M, Glatthaar S, Binder J R 2011 Solid State Ionics 201 49

    [12]

    Wang C Z 2000 Solid Electrolyte and Chemical Sensors (Beijing:Metallurgical Industry Press) p138(in Chinese)[王常珍2000固体电解质和化学传感器(北京:冶金工业出版社)第138页]

    [13]

    Sun M R, Wang Z X, Li X H, Guo H J, Peng W J 2013 Chin. J. Nonferrous Met. 2 469 (in Chinese)[苏明如, 王志兴, 李新海, 郭华军, 彭文杰2013中国有色金属学报2 469]

    [14]

    Ma Q, Xu Q, Tsai C L, Tietz F, Guillon O 2016 J. Am. Ceram. Soc. 99 410

    [15]

    Jimnez R, Campo A D, Calzada M L, Sanz J, Kobylianska S D, Solopan S O, Belous A G 2016 J. Electrochem. Soc. 163 1653

    [16]

    Popovici D, Nagai H, Fujishima S, Akedo J 2011 J. Am. Ceram. Soc. 94 3847

    [17]

    Chen H, Tao H, Wu Q, Zhao X 2013 J. Am. Ceram. Soc. 96 801

    [18]

    Kothari D H, Kanchan D K 2016 Physica B:Condens. Matter 501 90

    [19]

    Zhu Y M, Ren X F, Li N 2010 Chem. Bull. 73 1073 (in Chinese)[朱永明, 任雪峰, 李宁2010化学通报73 1073]

    [20]

    Hosono H, Tsuchitani F, Imai K, Maeda Y A M 1994 J. Mater. Res. 9 755

    [21]

    Wu X M, Xiao Z B, Ma M Y, Chen S 2011 J. Chin. Ceram. Soc. 39 329 (in Chinese)[吴显明, 肖卓炳, 麻明友, 陈上2011硅酸盐学报39 329]

    [22]

    Best A S, Forsyth M, Macfarlane D R 2000 Solid State Ionics 136-137 339

    [23]

    Birke P, Salam F, Dring S, Weppner W 1999 Solid State Ionics 118 149

    [24]

    Churikov A V, Gamayunova I M, Shirokov A V 2000 J. Solid State Electrochem. 4 216

    [25]

    Thevenin J 1985 J. Power Sources 14 45

    [26]

    Arbi K, Bucheli W, Jimnez R, Sanz J 2015 J. Eur. Ceram. Soc. 35 1477

    [27]

    Morimoto H, Hirukawa M, Matsumoto A, Kurahayashi T, Ito N, Tobishima S I 2014 Electrochem. 82 870

    [28]

    He H L, Wu X M, Chen S, Ding Q C, Chen S B 2015 J. Synth. Cryst. 44 1 (in Chinese)[何海亮, 吴显明, 陈上, 丁其晨, 陈守彬2015人工晶体学报44 1]

    [29]

    Zhu Y H, Wang H, Zheng C M 2016 Guangzhou Chem. Ind. 44 15 (in Chinese)[朱宇豪, 王珲, 郑春满2016广州化工44 15]

    [30]

    Zhou C, Li H Q, Qiao K, Zhang J, Tang Q 2014 Adv. Mater. Ind. 3 40 (in Chinese)[周矗, 李合琴, 乔恺, 张静, 唐琼2014新材料产业3 40]

    [31]

    Li J, Ru Q, Hu S J, Guo L Y 2014 Acta Phys. Sin. 63 168201 (in Chinese)[李娟, 汝强, 胡社军, 郭凌云2014物理学报63 168201]

    [32]

    Bai X J 2014 Acta Phys. -Chim. Sin. 33 337 (in Chinese)[白雪君2014物理化学学报33 337]

    [33]

    Ma H, Liu L, Lu X S, Liu S P, Shi J Y 2015 Acta Phys. Sin. 64 248201 (in Chinese)[马昊, 刘磊, 路雪森, 刘素平, 师建英2015物理学报64 248201]

    [34]

    Liu P, Ma Q, Fang Z, Ma J, Hu Y S, Zhou Z B, Li H, Huang X J, Chen L Q 2016 Chin. Phys. B 25 97

    [35]

    Zhao E, Ma F, Jin Y, Kanamura K 2016 J. Alloys Compd. 680 646

    [36]

    Xu X, Wen Z, Yang X, Chen L 2008 Mater. Res. Bull. 43 2334

    [37]

    Xu X, Wen Z, Yang X, Zhang J, Gu Z 2006 Solid State Ionics 177 2611

    [38]

    Liu Y L, Zhang H, Xue D, Cui B, Li Z C 2012 Chin. J. Nonferrous Met. 22 144 (in Chinese)[刘玉龙, 张鸿, 薛丹, 崔彬, 李志成2012中国有色金属学报22 144]

  • [1] 牛佳林, 董思远, 魏永星, 靳长清, 南瑞华, 杨斌. 助溶剂法生长的AgNbO3晶体相转变特征、电学和光学性能. 物理学报, 2024, 73(3): 038101. doi: 10.7498/aps.73.20230984
    [2] 王晓艺, 王希, 王俊, 程德强, 王悦. V2O5-Al2O3助烧剂对低温烧结Li-Zn微波铁氧体性能的影响. 物理学报, 2023, 72(3): 037501. doi: 10.7498/aps.72.20221723
    [3] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [4] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [5] 吴明宇, 弭光宝, 李培杰, 黄旭. 多层石墨烯与TiAl合金复合材料固相烧结过程中Ti2AlC与Ti3AlC的形成机制. 物理学报, 2022, 71(19): 196801. doi: 10.7498/aps.71.20220845
    [6] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] 任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐. 浅析电解质中离子输运的微观物理图像. 物理学报, 2020, 69(22): 226601. doi: 10.7498/aps.69.20201519
    [8] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [9] 肖睿娟, 李泓, 陈立泉. 基于材料基因组方法的锂电池新材料开发. 物理学报, 2018, 67(12): 128801. doi: 10.7498/aps.67.20180657
    [10] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [11] 吴芳, 王伟. 高压烧结法制备Bi2Te3纳米晶块体热电性能的研究. 物理学报, 2015, 64(4): 047201. doi: 10.7498/aps.64.047201
    [12] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [13] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型. 物理学报, 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [14] 王君君, 龚静, 宫振丽, 闫晓丽, 高舒, 王波. 聚合物纳米复合电解质(PEO)8-ZnO-LiClO4微结构及电导率研究. 物理学报, 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [15] 胡永刚, 肖建中, 夏风, 武玺旺, 闫双志. 基于热膨胀性质的ZrO2 固体电解质性能与相关系模型. 物理学报, 2010, 59(10): 7447-7451. doi: 10.7498/aps.59.7447
    [16] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [17] 郭新, 袁润章, 孙尧卿, 崔崑. 晶界在多晶ZrO2基固体电解质中的作用. 物理学报, 1996, 45(5): 860-868. doi: 10.7498/aps.45.860
    [18] 袁望治, 黎文辉, 袁望曦, 王大志. 固体电解质蒙脱石结构与电导性能研究. 物理学报, 1990, 39(6): 98-104. doi: 10.7498/aps.39.98
    [19] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应. 物理学报, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
    [20] 朱斌, 王大志, 俞文海. 蒙脱石固体电解质的高价离子导电性. 物理学报, 1988, 37(8): 1307-1314. doi: 10.7498/aps.37.1307
计量
  • 文章访问数:  5253
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-06-09
  • 刊出日期:  2017-10-05

/

返回文章
返回