搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究

张战刚 雷志锋 岳龙 刘远 何玉娟 彭超 师谦 黄云 恩云飞

引用本文:
Citation:

空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究

张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞

Single event upset characteristics and physical mechanism for nanometric SOI SRAM induced by space energetic ions

Zhang Zhan-Gang, Lei Zhi-Feng, Yue Long, Liu Yuan, He Yu-Juan, Peng Chao, Shi Qian, Huang Yun, En Yun-Fei
PDF
导出引用
  • 基于蒙特卡罗方法研究空间高能离子在65–32 nm绝缘体上硅静态随机存取存储器(SOI SRAM)中产生的灵敏区沉积能量谱、单粒子翻转截面和空间错误率特性及内在的物理机理.结果表明:单核能为200 MeV/n的空间离子在60–40 nm厚的灵敏区中产生的能损歧离导致纳米级SOI SRAM在亚线性能量转移阈值区域出现单粒子翻转;宽的二次电子分布导致灵敏区仅能部分收集单个高能离子径迹中的电子-空穴对,致使灵敏区最大和平均沉积能量各下降25%和33.3%,进而引起单粒子翻转概率降低,以及在轨错误率下降约80%.发现俘获带质子直接电离作用导致65 nm SOI SRAM的在轨错误率增大一到两个数量级.
    Based on Monte-Carlo method, the characteristics and physical mechanisms for deposited-energy spectra in sensitive volume (SV), single event upset cross sections, and on-orbit error rates in 65-32 nm silicon-on-insulator static random access memory (SOI SRAM) devices induced by space energetic ions are investigated. Space ions on geostationary earth orbit exhibit a flux peak at an energy point of about 200 MeV/n. In consequence, the single event response of nanometric SOI SRAMs under 200 MeV/n heavy ions is studied in detail. The results show that 200 MeV/n space ions exhibit the large straggling of deposited-energy in the device SV with thickness ranging from 60 nm to 40 nm, which causes the single event upsets to occur in the sub-LETmth region. The device SV can only partially collect the electron-hole pairs in the single ion track with a wide distribution of secondary electrons. As a result, the maximum and average deposited-energy in the SV decrease by 25% and 33.3%, respectively. Further, the single event upset probability decreases and the on-orbit error rate decreases by about 80%. With the downscaling of feature size, the per-bit saturated cross sections and on-orbit error rates of nanometric SOI SRAM devices decrease dramatically. The phenomenon of constant-increasing single event upset cross section with higher ion linear energy transfer (LET) is not observed, owing to the fact that (a) the density of electron-hole pairs in the track of 200 MeV/n space ion is relatively low and (b) the SOI device has thin sensitive volume, which results in the fact that the secondary-electron effect cannot upset nearby sensitive cells. Besides, it is found that the direct-ionization process of trapped protons leads to an increase of on-orbit error rate of 65 nm SOI SRAM by one to two orders of magnitude.
      通信作者: 张战刚, zhangangzhang@163.com
    • 基金项目: 国家自然科学基金(批准号:11505033)、广东省省级科技计划(批准号:2015B090901048,2017B090901068,2015B090912002)和广州市科技计划(批准号:201707010186)资助的课题.
      Corresponding author: Zhang Zhan-Gang, zhangangzhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11505033), the Science and Technology Research Project of Guangdong, China (Grant Nos. 2015B090901048, 2017B090901068, 2015B090912002), and the Science and Technology Plan Project of Guangzhou, China (Grant No. 201707010186).
    [1]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747

    [2]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726

    [3]

    Reed R A, Weller R A, Schrimpf R D, Mendenhall M H, Warren K M, Massengill L W 2006 IEEE Trans. Nucl. Sci. 53 3356

    [4]

    Warren K M, Weller R A, Mendenhall M H, Reed R A, Ball D R, Howe C L, Olson B D, Alles M L, Massengill L W, Schrimpf R D, Haddad N F, Doyle S E, McMorrow D, Melinger J S, Lotshaw W T 2005 IEEE Trans. Nucl. Sci. 52 2125

    [5]

    Dodd P E, Schwank J R, Shaneyfelt M R, Ferlet-Cavrois V, Paillet P, Baggio J, Hash G L, Felix J A, Hirose K, Saito H 2007 IEEE Trans. Nucl. Sci. 54 889

    [6]

    Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Trans. Nucl. Sci. 54 2303

    [7]

    Ecoffet R, Duzellier S, Falguere D, Guibert L, Inguimbert C 1997 IEEE Trans. Nucl. Sci. 44 2230

    [8]

    Koga R, Crain S H, Crain W R, Crawford K B, Hansel S J 1998 IEEE Trans. Nucl. Sci. 45 2475

    [9]

    Liu M S, Liu H Y, Brewster N, Nelson D, Golke K W, Kirchner G, Hughes H L, Campbell A, Ziegler J F 2006 IEEE Trans. Nucl. Sci. 53 3487

    [10]

    Xapsos M A 1992 IEEE Trans. Nucl. Sci. 39 1613

    [11]

    Dodd P E, Musseau O, Shaneyfelt M R, Sexton F W, D'hose C, Hash G L, Martinez M, Loemker R A, Leray J L, Winokur P S 1998 IEEE Trans. Nucl. Sci. 45 2483

    [12]

    Reed R A, Weller R A, Mendenhall M H, Lauenstein J M, Warren K M, Pellish J A, Schrimpf R D, Sierawski B D, Massengill L W, Dodd P E, Shaneyfelt M R, Felix J A, Schwank J R, Haddad N F, Lawrence R K, Bowman J H, Conde R 2007 IEEE Trans. Nucl. Sci. 54 2312

    [13]

    Raine M, Gaillardin M, Sauvestre J E, Flament O, Bournel A, Aubry-Fortuna V 2010 IEEE Trans. Nucl. Sci. 57 1892

    [14]

    Zhang Z G, Liu J, Hou M D, Sun Y M, Zhao F Z Liu G, Han Z S, Geng C, Liu J D, Xi K, Duan J L, Yao H J, Mo D, Luo J, Gu S, Liu T Q 2013 Chin. Phys. B 22 096103

    [15]

    Raine M, Gaillardin M, Paillet P, Duhamel O, Girard S, Bournel A 2011 IEEE Trans. Nucl. Sci. 58 2664

    [16]

    Zhang Z G, Lei Z F, En Y F, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19-23, 2016 pp1-4

    [17]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [18]

    Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2008 IEEE Trans. Nucl. Sci. 55 3394

    [19]

    Fenouillet-Beranger C, Perreau P, Pham-Nguyen L, Denorme S, Andrieu F, Tosti L, Brevard L, Weber O, Barnola S, Salvetat T, Garros X, Casse M, Cassé M, Leroux C, Noel J P, Thomas O, Le-Gratiet B, Baron F, Gatefait M, Campidelli Y, Abbate F, Perrot C, de-Buttet C, Beneyton R, Pinzelli L, Leverd F, Gouraud P, Gros-Jean M, Bajolet A, Mezzomo C, Leyris C, Haendler S, Noblet D, Pantel R, Margain A, Borowiak C, Josse E, Planes N, Delprat D, Boedt F, Bourdelle K, Nguyen B Y, Boeuf F, Faynot O, Skotnicki T 2009 IEEE International Electron Devices Meeting (IEDM) Baltimore, USA, December 7-9, 2009 p1

    [20]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141

    [21]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150

    [22]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [23]

    Pavlovic M, Strasik I 2007 Nucl. Instrum. Meth. Phys. Res. B 257 601

    [24]

    Raine M, Hubert G, Gaillardin M, Artola L, Paillet P, Girard S, Sauvestre J, Bournel A 2011 IEEE Trans. Nucl. Sci. 58 840

  • [1]

    Dodd P E, Shaneyfelt M R, Schwank J R, Felix J A 2010 IEEE Trans. Nucl. Sci. 57 1747

    [2]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726

    [3]

    Reed R A, Weller R A, Schrimpf R D, Mendenhall M H, Warren K M, Massengill L W 2006 IEEE Trans. Nucl. Sci. 53 3356

    [4]

    Warren K M, Weller R A, Mendenhall M H, Reed R A, Ball D R, Howe C L, Olson B D, Alles M L, Massengill L W, Schrimpf R D, Haddad N F, Doyle S E, McMorrow D, Melinger J S, Lotshaw W T 2005 IEEE Trans. Nucl. Sci. 52 2125

    [5]

    Dodd P E, Schwank J R, Shaneyfelt M R, Ferlet-Cavrois V, Paillet P, Baggio J, Hash G L, Felix J A, Hirose K, Saito H 2007 IEEE Trans. Nucl. Sci. 54 889

    [6]

    Dodd P E, Schwank J R, Shaneyfelt M R, Felix J A, Paillet P, Ferlet-Cavrois V, Baggio J, Reed R A, Warren K M, Weller R A, Schrimpf R D, Hash G L, Dalton S M, Hirose K, Saito H 2007 IEEE Trans. Nucl. Sci. 54 2303

    [7]

    Ecoffet R, Duzellier S, Falguere D, Guibert L, Inguimbert C 1997 IEEE Trans. Nucl. Sci. 44 2230

    [8]

    Koga R, Crain S H, Crain W R, Crawford K B, Hansel S J 1998 IEEE Trans. Nucl. Sci. 45 2475

    [9]

    Liu M S, Liu H Y, Brewster N, Nelson D, Golke K W, Kirchner G, Hughes H L, Campbell A, Ziegler J F 2006 IEEE Trans. Nucl. Sci. 53 3487

    [10]

    Xapsos M A 1992 IEEE Trans. Nucl. Sci. 39 1613

    [11]

    Dodd P E, Musseau O, Shaneyfelt M R, Sexton F W, D'hose C, Hash G L, Martinez M, Loemker R A, Leray J L, Winokur P S 1998 IEEE Trans. Nucl. Sci. 45 2483

    [12]

    Reed R A, Weller R A, Mendenhall M H, Lauenstein J M, Warren K M, Pellish J A, Schrimpf R D, Sierawski B D, Massengill L W, Dodd P E, Shaneyfelt M R, Felix J A, Schwank J R, Haddad N F, Lawrence R K, Bowman J H, Conde R 2007 IEEE Trans. Nucl. Sci. 54 2312

    [13]

    Raine M, Gaillardin M, Sauvestre J E, Flament O, Bournel A, Aubry-Fortuna V 2010 IEEE Trans. Nucl. Sci. 57 1892

    [14]

    Zhang Z G, Liu J, Hou M D, Sun Y M, Zhao F Z Liu G, Han Z S, Geng C, Liu J D, Xi K, Duan J L, Yao H J, Mo D, Luo J, Gu S, Liu T Q 2013 Chin. Phys. B 22 096103

    [15]

    Raine M, Gaillardin M, Paillet P, Duhamel O, Girard S, Bournel A 2011 IEEE Trans. Nucl. Sci. 58 2664

    [16]

    Zhang Z G, Lei Z F, En Y F, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19-23, 2016 pp1-4

    [17]

    Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P, Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522

    [18]

    Heidel D F, Marshall P W, LaBel K A, Schwank J R, Rodbell K P, Hakey M C, Berg M D, Dodd P E, Friendlich M R, Phan A D, Seidleck C M, Shaneyfelt M R, Xapsos M A 2008 IEEE Trans. Nucl. Sci. 55 3394

    [19]

    Fenouillet-Beranger C, Perreau P, Pham-Nguyen L, Denorme S, Andrieu F, Tosti L, Brevard L, Weber O, Barnola S, Salvetat T, Garros X, Casse M, Cassé M, Leroux C, Noel J P, Thomas O, Le-Gratiet B, Baron F, Gatefait M, Campidelli Y, Abbate F, Perrot C, de-Buttet C, Beneyton R, Pinzelli L, Leverd F, Gouraud P, Gros-Jean M, Bajolet A, Mezzomo C, Leyris C, Haendler S, Noblet D, Pantel R, Margain A, Borowiak C, Josse E, Planes N, Delprat D, Boedt F, Bourdelle K, Nguyen B Y, Boeuf F, Faynot O, Skotnicki T 2009 IEEE International Electron Devices Meeting (IEDM) Baltimore, USA, December 7-9, 2009 p1

    [20]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141

    [21]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150

    [22]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [23]

    Pavlovic M, Strasik I 2007 Nucl. Instrum. Meth. Phys. Res. B 257 601

    [24]

    Raine M, Hubert G, Gaillardin M, Artola L, Paillet P, Girard S, Sauvestre J, Bournel A 2011 IEEE Trans. Nucl. Sci. 58 840

  • [1] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验. 物理学报, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [2] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [3] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [4] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [5] 王硕, 常永伟, 陈静, 王本艳, 何伟伟, 葛浩. 新型绝缘体上硅静态随机存储器单元总剂量效应. 物理学报, 2019, 68(16): 168501. doi: 10.7498/aps.68.20190405
    [6] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [7] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算. 物理学报, 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [8] 周航, 郑齐文, 崔江维, 余学峰, 郭旗, 任迪远, 余德昭, 苏丹丹. 总剂量效应致0.13m部分耗尽绝缘体上硅N型金属氧化物半导体场效应晶体管热载流子增强效应. 物理学报, 2016, 65(9): 096104. doi: 10.7498/aps.65.096104
    [9] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [10] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [11] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [12] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [13] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [14] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [15] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [16] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [17] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [18] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [19] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  4461
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-01
  • 修回日期:  2017-08-29
  • 刊出日期:  2017-12-05

/

返回文章
返回