搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子晶体光纤交叉敏感分离的磁场温度传感研究

吴倩 张诸宇 郭晓晨 施伟华

引用本文:
Citation:

基于光子晶体光纤交叉敏感分离的磁场温度传感研究

吴倩, 张诸宇, 郭晓晨, 施伟华

Simultaneous measurement of magnetic field and temperature based on photonic crystal fiber with eliminating cross-sensitivity

Wu Qian, Zhang Zhu-Yu, Guo Xiao-Chen, Shi Wei-Hua
PDF
导出引用
  • 提出了一种基于定向耦合效应和表面等离子共振效应的交叉敏感分离的磁场温度传感结构.在光子晶体光纤的一个特定空气孔中填充磁流体,利用磁流体的磁光效应和定向耦合效应形成磁场传感通道;在垂直方向的另一空气孔的内壁镀金纳米薄膜并填充甲苯液体,利用甲苯的温敏效应和表面等离子共振效应形成温度传感通道.对应输出谱出现两个损耗峰,测量损耗峰位置可以间接测出磁场强度和温度变化.通过理论计算和结构优化,在90270 Oe(1 Oe=103/(4) A/m)范围内,磁场强度的灵敏度最高可达1.16 nm/Oe;在2560℃范围内,温度的灵敏度可达-9.07 nm/℃.虽然填充的两种液体的折射率都受环境温度的影响,但通过建立灵敏度系数矩阵,可以消除磁场强度与温度的交叉敏感,实现磁场温度双参量的高灵敏度检测.
    Measurement of magnetic field is very important in many fields, such as industrial manufacture, marine environmental monitoring, medical testing, etc. However, there is a cross sensitivity between the measurement of magnetic field and the fluctuation temperature in the environment. So how to accurately measure the magnetic field and the temperature simultaneously by eliminating the cross-sensitivity has been an urgent problem. In recent years, photonic crystal fiber (PCF) sensor has been widely used due to its particular advantages, such as high sensitivity, small size and its flexibility of filling various sensitive media into the air hole. So the PCF provides a new idea for designing the high-sensitivity magnetic sensor. In this paper, a new PCF sensing structure based on the mixed effects of directional resonance coupling and surface plasmon resonance (SPR) is proposed. In the cladding of the PCF, one air hole infiltrated with the magnetic fluid (MF) forms a defect core and is used as a directional coupling channel. When the wave vector matching condition is satisfied in the directional coupling channel, the power is transferred from the fiber core region to the clad defect core at a particular wavelength, and a loss peak is generated in the transmission spectrum. The MF has its unique magneto-optical effect. This is because its refractive index changes with external magnetic field. So the loss peak can be shifted with the magnetic field at a fixed temperature. Another air hole coated with a gold nano film and infiltrated with the methylbenzene is used as the SPR channel. So plasmon modes are excited, and the resonance peak occurs when the real part of the effective index of the core mode is equal to that of the SPR mode at a particular wavelength. The resonance peak can also be shifted with the index of the methylbenzene at changed temperature. The simulation and numerical analysis of the magnetic field and temperature sensing characteristics of the structure are carried out, and the structure parameters of PCF are optimized by COMSOL Multiphysics through using the finite element method under the boundary condition of perfectly matched layer. In a magnetic field range of 90-270 Oe and in a temperature range of 25-60 ℃, the highest magnetic field sensitivity and temperature sensitivity are respectively 1.16 nm/Oe and -9.07 nm/℃, each with a good linearity in the sensing structure. To eliminate the cross sensitivity between the temperature and magnetic field, a sensitivity coefficient matrix is established. As a result, the highly sensitive double-parameter detection of magnetic field and temperature is realized. Moreover, this sensing structure can be used in an extensive range, which has a certain potential value and practical significance.
      通信作者: 施伟华, njupt_shiwh@126.com
    • 基金项目: 国家自然科学基金(批准号:61571237)资助的课题.
      Corresponding author: Shi Wei-Hua, njupt_shiwh@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571237).
    [1]

    Yin J D, Ruan S C, Liu T G, Jiang J F, Wang S, Wei H F, Yan P G 2017 Sens. Actuators B 238 518

    [2]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [3]

    Zhao Y, Wu D, L R Q, Li J 2016 IEEE Trans. Instrum. Meas. 65 1503

    [4]

    Qiu Z Q, Bader S D 2000 Rev. Sci. Instrum. 71 1243

    [5]

    Li J H, Wang R, Wang J Y, Zhang B F, Xu Z Y, Wang H L 2014 Opt. Fiber Technol. 20 100

    [6]

    Liu Q, Li S G, Wang X Y 2017 Sens. Actuators B 242 949

    [7]

    Li X G, Zhou X, Zhao Y, L R Q 2018 Opt. Fiber Technol. 41 1

    [8]

    de Moutusi, Singh V K 2018 Opt. Laser Technol. 106 61

    [9]

    Rodrguez-Schwendtner E, Daz-Herrera N, Navarrete M C, Gonzlez-Cano A, Estebanetal 2017 Sens. Actuators B 264 58

    [10]

    Shuai B, Xia L, Zhang Y, Liu D 2012 Opt. Express 20 5974

    [11]

    Liu Y H 2013 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunication) (in Chinese) [刘耀辉 2013 硕士毕业论文 (南京: 南京邮电大学)]

    [12]

    Anna S 2003 J. Appl. Phys. 94 6167

    [13]

    Chen Y F, Yang S Y, Tse W S, Homg H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett 82 3481

    [14]

    Steel M J, Osgood R M 2001 Opt. Lett. 26 229

    [15]

    You C J 2015 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunication) (in Chinese) [尤承杰 2015 硕士毕业论文 (南京: 南京邮电大学)]

    [16]

    Rosensweig R E 2014 Ferrohydrodynamics (New York: Dover Publications, Inc.) pp56-65

    [17]

    Shi W H 2015 Acta Phys. Sin. 64 224221 (in Chinese) [施伟华 2015 物理学报 64 224221]

    [18]

    Yu Y Q, Li X J, Hong X M, Deng Y L, Song K Y, Geng Y F, Wei H F, Tong W J 2010 Opt. Express 18 15383

    [19]

    Saitoh K, Koshiba M 2002 IEEE J. Quantum Electron. 38 927

    [20]

    Wu D K C, Lee K L, Pureur V, Kuhlmey B T 2013 J. Lightwave Technol. 31 3500

  • [1]

    Yin J D, Ruan S C, Liu T G, Jiang J F, Wang S, Wei H F, Yan P G 2017 Sens. Actuators B 238 518

    [2]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [3]

    Zhao Y, Wu D, L R Q, Li J 2016 IEEE Trans. Instrum. Meas. 65 1503

    [4]

    Qiu Z Q, Bader S D 2000 Rev. Sci. Instrum. 71 1243

    [5]

    Li J H, Wang R, Wang J Y, Zhang B F, Xu Z Y, Wang H L 2014 Opt. Fiber Technol. 20 100

    [6]

    Liu Q, Li S G, Wang X Y 2017 Sens. Actuators B 242 949

    [7]

    Li X G, Zhou X, Zhao Y, L R Q 2018 Opt. Fiber Technol. 41 1

    [8]

    de Moutusi, Singh V K 2018 Opt. Laser Technol. 106 61

    [9]

    Rodrguez-Schwendtner E, Daz-Herrera N, Navarrete M C, Gonzlez-Cano A, Estebanetal 2017 Sens. Actuators B 264 58

    [10]

    Shuai B, Xia L, Zhang Y, Liu D 2012 Opt. Express 20 5974

    [11]

    Liu Y H 2013 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunication) (in Chinese) [刘耀辉 2013 硕士毕业论文 (南京: 南京邮电大学)]

    [12]

    Anna S 2003 J. Appl. Phys. 94 6167

    [13]

    Chen Y F, Yang S Y, Tse W S, Homg H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett 82 3481

    [14]

    Steel M J, Osgood R M 2001 Opt. Lett. 26 229

    [15]

    You C J 2015 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunication) (in Chinese) [尤承杰 2015 硕士毕业论文 (南京: 南京邮电大学)]

    [16]

    Rosensweig R E 2014 Ferrohydrodynamics (New York: Dover Publications, Inc.) pp56-65

    [17]

    Shi W H 2015 Acta Phys. Sin. 64 224221 (in Chinese) [施伟华 2015 物理学报 64 224221]

    [18]

    Yu Y Q, Li X J, Hong X M, Deng Y L, Song K Y, Geng Y F, Wei H F, Tong W J 2010 Opt. Express 18 15383

    [19]

    Saitoh K, Koshiba M 2002 IEEE J. Quantum Electron. 38 927

    [20]

    Wu D K C, Lee K L, Pureur V, Kuhlmey B T 2013 J. Lightwave Technol. 31 3500

  • [1] 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计. 物理学报, 2021, 70(1): 014202. doi: 10.7498/aps.70.20200721
    [2] 张尧, 孙帅, 闫忠宝, 张果, 史伟, 盛泉, 房强, 张钧翔, 史朝督, 张贵忠, 姚建铨. 太赫兹双芯反谐振光纤的设计及其耦合特性. 物理学报, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [3] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [4] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [5] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [6] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [7] 赵兴涛, 刘晓旭, 郑义, 韩颖, 周桂耀, 李曙光, 侯蓝田. 微小空气孔传光的光子晶体光纤研究. 物理学报, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [8] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [9] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [10] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [11] 郭铁英, 娄淑琴, 李宏雷, 简水生. 光子晶体光纤拉制中工艺参数的控制. 物理学报, 2009, 58(9): 6308-6315. doi: 10.7498/aps.58.6308
    [12] 方晓惠, 柴路, 胡明列, 栗岩锋, 王清月. 七芯光子晶体光纤结构优化的数值分析. 物理学报, 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [13] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [14] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [15] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [16] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [17] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [18] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
    [19] 任国斌, 王 智, 娄淑琴, 简水生. 椭圆孔光子晶体光纤的本地正交函数模型. 物理学报, 2004, 53(2): 484-489. doi: 10.7498/aps.53.484
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性. 物理学报, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
计量
  • 文章访问数:  5385
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-12
  • 修回日期:  2018-05-14
  • 刊出日期:  2019-09-20

/

返回文章
返回