搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁电存储器中高能质子引发的单粒子功能中断效应实验研究

琚安安 郭红霞 张凤祁 郭维新 欧阳晓平 魏佳男 罗尹虹 钟向丽 李波 秦丽

引用本文:
Citation:

铁电存储器中高能质子引发的单粒子功能中断效应实验研究

琚安安, 郭红霞, 张凤祁, 郭维新, 欧阳晓平, 魏佳男, 罗尹虹, 钟向丽, 李波, 秦丽

Experimental study about single event functional interrupt of ferroelectric random access memory induced by 30-90 MeV proton

Ju An-An, Guo Hong-Xia, Zhang Feng-Qi, Guo Wei-Xin, Ouyang Xiao-Ping, Wei Jia-Nan, Luo Yin-Hong, Zhong Xiang-Li, Li Bo, Qin Li
PDF
导出引用
  • 利用中国原子能科学研究院的中高能质子实验平台,针对两款商用铁电存储器开展了中高能质子单粒子效应实验研究,发现其中一款器件在质子辐照下发生了单粒子翻转和单粒子功能中断.本文主要针对单粒子功能中断效应展开了后续实验研究.首先通过改变质子能量对器件进行辐照,发现单粒子功能中断截面随质子能量的提高而增加.为进一步研究器件发生单粒子功能中断的机理,利用激光微束平台开展了辅助实验,对铁电存储器的单粒子功能中断效应的敏感区域进行了定位,最后发现铁电存储器单粒子功能中断是由器件外围电路发生的微锁定导致的.
    Ferroelectric random access memory (FRAM) is a promising memory for space application. The performance of FRAM under irradiation environment should be investigated, especially under proton irradiation environment, which dominates the particles in the space environment. The experiments on single event effects are carried out for two types of FRAMs (FM22L16 and FM28 V100) based on the proton cyclotron of China institute of atomic energy. Both dynamic and static mode are tested for each chip under the irradiation of proton in an energy range from 30 MeV to 90 MeV. Single event upsets (SEUs) and single event functional interrupts (SEFIs) are observed only on FM22L16, where the SEFI is recorded as a significantly transient error with or without memory cell upsets. The SEFI can be subdivided into soft SEFI and hard SEFI according to whether those significantly transient errors disappear or not when the irradiation is paused. Single event effect performances of FM22L16 are accurately described, and the SEFI cross section in an energy range from 50 MeV to 90 MeV is obtained experimentally. The cross section of SEFI increases with proton energy increasing and reaches 10-3/cm2 at 90 MeV. To further study the mechanism of SEFI, the pulsed laser beam with a wavelength of 1064 nm is used to pinpoint the sensitive area of SEFI in the FRAM. Pulsed laser experiment is easy to carry out when single pulsed laser radiates on the device from the back side. Results show that a certain part in peripheral circuit is detected as a sensitive area to SEFI. The sensitive area could be a register or buffer which is vulnerable to irradiation. Only SEUs are observed when the pulsed laser radiates others area of peripheral circuit and memory cell. A hypothesis that a micro latch-up in the CMOS-based peripheral circuit leads to the SEFI is proposed to explain the test results, for the CMOS-based peripheral circuit is sensitive to irradiation. The further reason is the energy deposition in silicon substrate by protons with energies ranging from 30 MeV to 90 MeV through nuclear reaction, which triggers the silicon controlled rectifier structure in the FRAM peripheral circuit. According to the hypothesis, a transient current should be generated in the peripheral circuit when the micro latch-up happens. The transient current is observed on the output of device by using a high frequency oscilloscope which demonstrates the reasonability of the hypothesis.
    • 基金项目: 国家自然科学基金(批准号:11605138,61634008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11605138, 61634008).
    [1]

    Dahl B A, Cruz-Colon J, Baumann R C, Rodriguez J A, Zhou C, Rodriguez-Latorre J, Khan S, San T, Trinh T 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1

    [2]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [3]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677

    [4]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 17 9275

    [5]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50

    [6]

    Rusu A, Salvatore G, lonescu A M 2009 International Semiconductor Conference Sinaia, Romania, October 12-14, 2009 p517

    [7]

    Zhang Z Z, Lei Z F, Yang Z L, Wang X H, Wang B, Liu J, En Y F, Chen H, Li B 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1

    [8]

    O'Bryan M V, LaBel K A, Buchner S P, Ladbury R L, Poivey C F, Oldham T R, Campola M J, Carts M A, Berg M D, Sanders A B, Mackey S R 2008 2008 IEEE Radiation Effects Data Workshop (REDW) Tucson, AZ, USA, July 14-18, 2008 p11

    [9]

    Wei J N, Guo H X, Zhang F Q, Luo Y H, Ding L L, Pan X Y, Zhang Y, Liu Y H 2017 Chin. Phys. B 26 096102

    [10]

    Xiao X S, Li N, Tong J 2012 IEEE Trans. Nucl. Sci. 59 211

    [11]

    Xuan S X, Li N, Tong J 2013 IEEE Trans. Nucl. Sci. 60 3932

    [12]

    Bosser A L, Gupta V, Javanainen A, Tsiligiannis G, LaLumondiere S D, Brewe D, Ferlet-Cavrois V, Puchner H, Kettunen H, Gil T, Wrobel F, Saigné F, Virtanen A, Dilillo L 2018 IEEE Trans. Nucl. Sci. 10 1109

    [13]

    Tausch J, Sleeter D, Radaelli D, Puchner H 2007 2007 IEEE Radiation Effects Data Workshop (REDW) Honolulu, HI, USA, July 23-27, 2007 p185

    [14]

    Label K A, Moran A K, Hawkins D K, Sanders A B 1996 IEEE Radiation Effects Data Workshop (REDW) Indian Wells, CA, USA, July 19-23, 1996 p19

  • [1]

    Dahl B A, Cruz-Colon J, Baumann R C, Rodriguez J A, Zhou C, Rodriguez-Latorre J, Khan S, San T, Trinh T 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1

    [2]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [3]

    Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J L, Cai M Q 2018 Nanoscale 10 8677

    [4]

    Yu Z L, Ma Q R, Zhao Y Q, Liu B, Cai M Q 2018 J. Phys. Chem. C 17 9275

    [5]

    Zhao Y Q, Wang X, Liu B, Yu Z L, He P B, Wan Q, Cai M Q, Yu H L 2018 Org. Electron. 53 50

    [6]

    Rusu A, Salvatore G, lonescu A M 2009 International Semiconductor Conference Sinaia, Romania, October 12-14, 2009 p517

    [7]

    Zhang Z Z, Lei Z F, Yang Z L, Wang X H, Wang B, Liu J, En Y F, Chen H, Li B 2015 IEEE Radiation Effects Data Workshop (REDW) Boston, MA, USA, July 13-17, 2015 p1

    [8]

    O'Bryan M V, LaBel K A, Buchner S P, Ladbury R L, Poivey C F, Oldham T R, Campola M J, Carts M A, Berg M D, Sanders A B, Mackey S R 2008 2008 IEEE Radiation Effects Data Workshop (REDW) Tucson, AZ, USA, July 14-18, 2008 p11

    [9]

    Wei J N, Guo H X, Zhang F Q, Luo Y H, Ding L L, Pan X Y, Zhang Y, Liu Y H 2017 Chin. Phys. B 26 096102

    [10]

    Xiao X S, Li N, Tong J 2012 IEEE Trans. Nucl. Sci. 59 211

    [11]

    Xuan S X, Li N, Tong J 2013 IEEE Trans. Nucl. Sci. 60 3932

    [12]

    Bosser A L, Gupta V, Javanainen A, Tsiligiannis G, LaLumondiere S D, Brewe D, Ferlet-Cavrois V, Puchner H, Kettunen H, Gil T, Wrobel F, Saigné F, Virtanen A, Dilillo L 2018 IEEE Trans. Nucl. Sci. 10 1109

    [13]

    Tausch J, Sleeter D, Radaelli D, Puchner H 2007 2007 IEEE Radiation Effects Data Workshop (REDW) Honolulu, HI, USA, July 23-27, 2007 p185

    [14]

    Label K A, Moran A K, Hawkins D K, Sanders A B 1996 IEEE Radiation Effects Data Workshop (REDW) Indian Wells, CA, USA, July 19-23, 1996 p19

  • [1] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建. 物理学报, 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [2] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [3] 傅婧, 蔡毓龙, 李豫东, 冯婕, 文林, 周东, 郭旗. 质子辐照下正照式和背照式图像传感器的单粒子瞬态效应. 物理学报, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [4] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [5] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [6] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [7] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [9] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [10] 罗尹虹, 张凤祁, 郭红霞, 郭晓强, 赵雯, 丁李利, 王园明. 纳米静态随机存储器质子单粒子多位翻转角度相关性研究. 物理学报, 2015, 64(21): 216103. doi: 10.7498/aps.64.216103
    [11] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [12] 陈睿, 余永涛, 上官士鹏, 封国强, 韩建伟. 90 nm互补金属氧化物半导体静态随机存储器局部单粒子闩锁传播效应诱发多位翻转的机理. 物理学报, 2014, 63(12): 128501. doi: 10.7498/aps.63.128501
    [13] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究. 物理学报, 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [14] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [15] 郑齐文, 余学峰, 崔江维, 郭旗, 任迪远, 丛忠超. 总剂量辐射环境中的静态随机存储器功能失效模式研究. 物理学报, 2013, 62(11): 116101. doi: 10.7498/aps.62.116101
    [16] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性. 物理学报, 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [17] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能. 物理学报, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [19] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  4814
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-24
  • 修回日期:  2018-08-29
  • 刊出日期:  2018-12-05

/

返回文章
返回