搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非扩散洛伦兹系统的周期轨道

董成伟

引用本文:
Citation:

非扩散洛伦兹系统的周期轨道

董成伟

Periodic orbits of diffusionless Lorenz system

Dong Cheng-Wei
PDF
导出引用
  • 混沌系统的奇怪吸引子是由无数条周期轨道稠密覆盖构成的,周期轨道是非线性动力系统中除不动点之外最简单的不变集,它不仅能够体现出混沌运动的所有特征,而且和系统振荡的产生与变化密切相关,因此分析复杂系统的动力学行为时获取周期轨道具有重要意义.本文系统地研究了非扩散洛伦兹系统一定拓扑长度以内的周期轨道,提出一种基于轨道的拓扑结构来建立一维符号动力学的新方法,通过变分法数值计算轨道显得很稳定.寻找轨道初始化时,两条轨道片段能够被用作基本的组成单元,基于整条轨道的结构进行拓扑分类的方式显得很有效.此外,讨论了周期轨道随着参数变化时的形变情况,为研究轨道的周期演化规律提供了新途径.本研究可为在其他类似的混沌体系中找到并且系统分类周期轨道提供一种可借鉴的方法.
    The strange attractor of a chaotic system is composed of numerous periodic orbits densely covered. The periodic orbit is the simplest invariant set except for the fixed point in the nonlinear dynamic system, it not only reflects all the characteristics of the chaotic motion, but also is closely related to the amplitude generation and change of chaotic system. Therefore, it is of great significance to obtain the periodic orbits in order to analyze the dynamical behaviors of the complex system. In this paper, we study the periodic orbits of the diffusionless Lorenz equations which are derived in the limit of high Rayleigh and Prandtl numbers. A new approach to establishing one-dimensional symbolic dynamics is proposed, and the periodic orbits based on a topological structure are systematically calculated. We use the variational method to locate the cycles, which is proposed to explore the periodic orbits in high-dimensional chaotic systems. The method not only preserves the robustness characteristics of most of other methods, such as the Newton descent method and multipoint shooting method, but it also has the characteristics of fast convergence when the search process is close to the real cycle in practice. In order to apply the method, a rough loop guess must be made first based on the entire topology for the cycle to be searched, and then the variational algorithm will bring the initial loop guess to evolving toward the real periodic orbit in the system. In the calculations, the Newton descent method is used to achieve stability. Two cycles can be used as basic building blocks for initialization, searching for more complex cycles with multiple circuits around the two fixed points requires more delicate initial conditions; otherwise, it will probably lead to nonconvergence. We can initialize the loop guess for longer cycles constructed by cutting and gluing the short, known cycles. For this system, such a method yields quite a good systematic initial guess for longer cycles. Even if we deform the orbit manually into a closed loop, the variational method still shows its powerfulness for good convergence. The topological classification based on the entire orbital structure is shown to be effective. Furthermore, the deformation of periodic orbits with the change of parameters is discussed, which provides a route to the periods of cycles. The present research may provide a method of performing systematic calculation and classification of periodic orbits in other similar chaotic systems.
    • 基金项目: 国家自然科学基金(批准号:11647085,11647086,11747106)、山西省应用基础研究计划(批准号:201701D121011)和中北大学自然科学研究基金(批准号:XJJ2016036)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647085, 11647086, 11747106), the Applied Basic Research Foundation of Shanxi Province (Grant No. 201701D121011), and the Natural Science Research Fund of North University of China (Grant No. XJJ2016036).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [3] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [4] 陈园园, 杨盼杰, 张玮芝, 阎晓娜. 光子晶体理论研究的新方法混合变分法. 物理学报, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [5] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [6] 徐红梅, 金永镐, 金璟璇. 基于符号动力学的开关变换器时间不可逆性分析. 物理学报, 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [7] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解. 物理学报, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [8] 陈冲, 丁炯, 张宏, 陈琢. 累积放电模型及其符号动力学研究. 物理学报, 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [9] 丁炯, 张宏, 童勤业. 蝙蝠听觉神经系统如何在复杂环境中识别昆虫. 物理学报, 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [10] 宋爱玲, 黄晓林, 司峻峰, 宁新宝. 符号动力学在心率变异性分析中的参数选择. 物理学报, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [11] 戴继慧, 郭旗. 强非局域非线性介质中的旋转涡旋光孤子. 物理学报, 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [12] 沈民奋, 林兰馨, 李小艳, 常春起. 基于符号动力学的耦合映像格子系统的初值估计. 物理学报, 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [13] 王学梅, 张 波, 丘东元, 陈良刚. DC-DC变换器的符号时间序列描述及模块熵分析. 物理学报, 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
    [14] 白东峰, 郭 旗, 胡 巍. 非局域克尔介质中厄米高斯光束传输的变分研究. 物理学报, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [15] 戴继慧, 郭 旗. 非局域非线性介质中光束传输的拉盖尔-高斯变分解. 物理学报, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [16] 刘小峰, 俞文莉. 基于符号动力学的认知事件相关电位的复杂度分析. 物理学报, 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [17] 王 开, 裴文江, 夏海山, 何振亚. 基于符号向量动力学的耦合映像格子初始向量估计. 物理学报, 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [18] 童 治, 魏 淮, 简水生. 分布式光纤拉曼放大器在长距离光传输系统中的优化设计. 物理学报, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [19] 肖方红, 阎桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法. 物理学报, 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [20] 康艳梅, 徐健学, 谢 勇. 单模非线性光学系统的弛豫速率与随机共振. 物理学报, 2003, 52(11): 2712-2717. doi: 10.7498/aps.52.2712
计量
  • 文章访问数:  5530
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-23
  • 修回日期:  2018-10-22
  • 刊出日期:  2019-12-20

/

返回文章
返回