搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲胺分子的紫外光解离动力学实验研究

汪小丽 姚关心 杨新艳 秦正波 郑贤锋 崔执凤

引用本文:
Citation:

甲胺分子的紫外光解离动力学实验研究

汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤

Experimental investigation on ultraviolet multiphoton dissociation dynamics of methylamine

Wang Xiao-Li, Yao Guan-Xin, Yang Xin-Yan, Qin Zheng-Bo, Zheng Xian-Feng, Cui Zhi-Feng
PDF
导出引用
  • 在280–287.5 nm区域内,通过实验测定共振增强多光子电离-时间飞行质谱、碎片离子的分质量激发谱以及光强指数等对甲胺分子的光解离通道进行了研究.实验结果证实甲胺分子在单光子能量范围内存在一个电子排斥态,主要的光解离过程为甲胺分子共振吸收1个光子到达该电子排斥态后解离成中性碎片,然后是中性碎片经多光子共振电离形成碎片离子和碎片离子的进一步解离.
    Methylamine is the simplest alkylamine. It is a typical molecule in the field of surface physicochemistry. The basic properties of the structure and reaction activity of this molecule are essential to understand its role in many chemical reactions. Its energy state and ionic structure, ionization dissociation channel and competition have aroused the interest of astronomical and physicochemical researchers. In order to further understand the mechanism of multiphoton dissociation and ionization of methylamine in this energy region, the photodissociation channels of methylamine are studied based on the measured resonance enhanced multiphoton ionization-time-of-flight mass spectrum (TOFMS), mass-selected excitation spectra of the ionized fragment, and laser power index of each ion in a range of 280-287.5 nm. The multiphoton ionization TOFMS of methylamine molecule is obtained at the excited laser wavelength of 283 nm. After calibration, the weaker ion peaks correspond to the C+, CH+, CH2+, CH3+, NH2+, NH3+, CN+, CH2NH+(CHNH2+, CH3N+), CH3NH2+; the mass-to-charge ratio of stronger peaks except H+ ions are 27, 28 and 30, respectively, and the mass-to-charge ratio of 28 and 30 belong to CHNH+, CH2NH2+ after analysis and discussion. Combining with the mass separation excitation spectra of the parent ions, it is concluded that there is a repulsive electronic state in the single photon energy. The main dissociation channel is the resonant photodissociation of the parent molecule in the repulsive state produced by one photoabsorption, followed by the photoionization of the fragment through the (1+1) multiphoton process and the further photodissociation of the ionized fragment.
    • 基金项目: 国家自然科学基金(批准号:61475001,11674003,21503003,61805002)和安徽省高等学校自然科学研究项目(批准号:KJ20180312)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 61475001, 11674003, 21503003, 61805002) and the Key Projects of Natural Science Foundation of Anhui Higher Education Institutions, China (Grant No. KJ2018A0312).
    [1]

    Taylor D P, Dion C F, Bernstein E R 1997 J. Chem. Phys. 106 3512

    [2]

    Taylor D P, Bernstein E R 1995 J. Chem. Phys. 103 10453

    [3]

    James O T, Katherine E L, Craig M 2014 J. Phys. Chem. A 118 9844

    [4]

    Tossell J A, Lederman S M, Moore J H, Coplan M A, Chornay D A 1984 J. Am. Chem. Soc. 106 976

    [5]

    Xiao H Y, Satoshi M, Keiji M 2013 J. Phys. Chem. A 117 5757

    [6]

    James O T, Katherine E L, Craig M 2012 J. Phys. Chem. Lett. 3 1341

    [7]

    Long C L, William K B 1982 J. Appl. Phys. 53 203

    [8]

    Michael J V, Noyes W A 1963 J. Am. Chem. Soc. 85 1228

    [9]

    Waschewsky G C G, Kitchen D C, Browning P W, Butler L J 1995 J. Phys. Chem. 99 2635

    [10]

    Reed C L, Kono M, Ashfold M N R 1996 J. Chem. Soc. Faraday Trans. 92 4897

    [11]

    Ashfold M N R, Dixon R N, Kono M, Mordaunt D H, Reed C L 1997 Philos. Trans. R. Soc. London Ser. A 355 1659

    [12]

    Dunn K M, Morokuma K 1996 J. Phys. Chem. 100 123

    [13]

    Sun J B, Kyo W C, Young S C, Sang K K 2002 J. Chem. Phys. 117 10057

    [14]

    Baek S J, Choi K W, Choi Y S 2003 J. Chem. Phys. 118 11026

    [15]

    Baek S J, Choi K W, Choi Y S, Kim S K 2003 J. Chem. Phys. 118 11040

    [16]

    Onitsuka Y, Yamasaki K, Goto H, Kohguchi H 2016 J. Phys. Chem. A 120 8584

    [17]

    Epshtein M, Portnova A, Bar I 2015 Phys. Chem. Chem. Phys. 17 19607

    [18]

    Li X, Vidal C R 1995 J. Chem. Phys. 102 9167

    [19]

    Donchi K F, Rumpf B A, Willet G D 1988 J. Am. Chem. Soc. 110 347

  • [1]

    Taylor D P, Dion C F, Bernstein E R 1997 J. Chem. Phys. 106 3512

    [2]

    Taylor D P, Bernstein E R 1995 J. Chem. Phys. 103 10453

    [3]

    James O T, Katherine E L, Craig M 2014 J. Phys. Chem. A 118 9844

    [4]

    Tossell J A, Lederman S M, Moore J H, Coplan M A, Chornay D A 1984 J. Am. Chem. Soc. 106 976

    [5]

    Xiao H Y, Satoshi M, Keiji M 2013 J. Phys. Chem. A 117 5757

    [6]

    James O T, Katherine E L, Craig M 2012 J. Phys. Chem. Lett. 3 1341

    [7]

    Long C L, William K B 1982 J. Appl. Phys. 53 203

    [8]

    Michael J V, Noyes W A 1963 J. Am. Chem. Soc. 85 1228

    [9]

    Waschewsky G C G, Kitchen D C, Browning P W, Butler L J 1995 J. Phys. Chem. 99 2635

    [10]

    Reed C L, Kono M, Ashfold M N R 1996 J. Chem. Soc. Faraday Trans. 92 4897

    [11]

    Ashfold M N R, Dixon R N, Kono M, Mordaunt D H, Reed C L 1997 Philos. Trans. R. Soc. London Ser. A 355 1659

    [12]

    Dunn K M, Morokuma K 1996 J. Phys. Chem. 100 123

    [13]

    Sun J B, Kyo W C, Young S C, Sang K K 2002 J. Chem. Phys. 117 10057

    [14]

    Baek S J, Choi K W, Choi Y S 2003 J. Chem. Phys. 118 11026

    [15]

    Baek S J, Choi K W, Choi Y S, Kim S K 2003 J. Chem. Phys. 118 11040

    [16]

    Onitsuka Y, Yamasaki K, Goto H, Kohguchi H 2016 J. Phys. Chem. A 120 8584

    [17]

    Epshtein M, Portnova A, Bar I 2015 Phys. Chem. Chem. Phys. 17 19607

    [18]

    Li X, Vidal C R 1995 J. Chem. Phys. 102 9167

    [19]

    Donchi K F, Rumpf B A, Willet G D 1988 J. Am. Chem. Soc. 110 347

计量
  • 文章访问数:  4690
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2018-10-22
  • 刊出日期:  2019-12-20

/

返回文章
返回