搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝基银纳米阵列制备及其紫外-可见-近红外光吸收特性

梁玲玲 赵艳 冯超

引用本文:
Citation:

铝基银纳米阵列制备及其紫外-可见-近红外光吸收特性

梁玲玲, 赵艳, 冯超

Fabrication and ultraviolet-visible-near infrared absorption properties of silver nano arrays based on aluminum

Liang Ling-Ling, Zhao Yan, Feng Chao
PDF
HTML
导出引用
  • 基于阳极氧化铝模板, 采用真空蒸镀技术, 制备了高度有序的周期性银纳米球阵列. 阵列几何结构参数调控实验发现, 通过控制蒸镀厚度, 可实现对阵列中银纳米球尺寸(直径)和间距的有效调控, 进而有效实现对紫外-可见-近红外各波段吸收峰位和峰宽的调制. 吸收光谱测试显示, 该纳米阵列在紫外、可见和近红外波段都具有明显的电磁波吸收特性. 时域有限差分理论模拟结合实验分析不同波段光吸收特性的物理机制, 紫外超窄强吸收为银、铝介电环境非对称诱发的法诺共振, 可见波段吸收源自于银纳米粒子局域表面等离子体共振, 近红外波段强吸收为银纳米球阵列表面晶格共振所激发.
    In this paper, the highly ordered periodic silver nanosphere arrays are fabricated by vacuum evaporation based on anodic aluminum oxide (AAO) template. The diameter and spacing of silver nanosphere in the arrays are adjusted just by controlling the thickness of evaporation. Furthermore, this can effectively modulate the absorption peaks and bandwidths in ultraviolet-visible-near-infrared regions. The measurement results of absorption spectra show that the nano-arrays have obvious electromagnetic wave absorption characteristics in the ultraviolet, visible and near-infrared bands. The finite-difference time-domain theoretical simulation combined with experiments is used to analyze the physical mechanism of light absorption characteristics in different wavebands. The ultraviolet strong absorption is due to the Fano resonance induced by asymmetric dielectric environment of silver and aluminum; the visible absorption originates from local surface plasmon resonance of silver nanoparticles; the near-infrared strong absorption is attributed to the surface lattice resonance of silver nanosphere arrays.
      通信作者: 赵艳, zhaoyan@bjut.edu.cn ; 冯超, fengchaoholy@bjut.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(51475014)
      Corresponding author: Zhao Yan, zhaoyan@bjut.edu.cn ; Feng Chao, fengchaoholy@bjut.edu.cn
    [1]

    Wang S Q, Xu L P, Wen Y Q, Du H W, Wang S T, Zhang X J 2013 Nanoscale 5 4284Google Scholar

    [2]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [3]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [4]

    Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H 2013 Angew. Chem. Int. Ed. 52 7446Google Scholar

    [5]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 15203Google Scholar

    [6]

    张喆, 柳倩, 祁志美 2013 物理学报 62 060703Google Scholar

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703Google Scholar

    [7]

    Offermans P, Schaafsma M C, Rodriguez S R K, Zhang Y C, Crego-Calama M, Brongersma S H, Rivas J G 2015 ACS Nano 5 5151

    [8]

    Ren K, Yin P, Zhou Y, Cao X, Dong C, Cui L, Liu H, Du X 2017 Small 13 1700867Google Scholar

    [9]

    Mi Y, Wen L Y, Xu R, Wang Z J, Cao D W, Fang Y G, Lei Y 2016 Adv. Energy Mater. 6 1501496Google Scholar

    [10]

    叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷 2014 物理学报 65 087802Google Scholar

    Ye S, Wang X, Hou Y D, Zhang Z Y, Du J L 2014 Acta Phys. Sin. 65 087802Google Scholar

    [11]

    Zhang J, Dong L, Yu S H 2015 Sci. Bull. 60 785Google Scholar

    [12]

    Khan Y, Li A R, Chang L, Li L D 2018 Sens. Actuator, B 255 1298Google Scholar

    [13]

    Xiong B, Zhou R, Hao J R, Jia Y H, He Y, Yeung E S 2013 Nat. Commun. 4 1708Google Scholar

    [14]

    Jung H Y, Yeo I S, Kim T U, Ki H C, Gu H B 2018 Appl. Surf. Sci. 432 266Google Scholar

    [15]

    Wu K, Li T, Schmidt M S, Rindzevicius T, Boisen A, Ndoni S 2018 Adv. Funct. Mater. 28 1704818Google Scholar

    [16]

    Zhan Z B, Xu R, Mi Y, Zhao H P, Lei Y 2015 ACS Nano 9 4583Google Scholar

    [17]

    Ji N, Ruan W D, Li Z S, Wang C X, Yang Z, Zhao B 2013 J. Raman Spectrosc. 44 1Google Scholar

    [18]

    King N S, Liu L F, Yang X, Cerjan B, Everitt H O, Nordlander P, Halas N J 2015 ACS Nano 9 10628Google Scholar

    [19]

    Zhan Z B, Xu R, Zheng X Z, Fu Q, Wu M H, Lei Y 2016 Nanotechnol. 27 445301Google Scholar

    [20]

    Minamimoto H, Oikawa S, Hayashi T, Shibazaki A, Li X W, Murakoshi K 2018 J. Phys. Chem. C 122 14162Google Scholar

    [21]

    Zhang C, Wu K, Ling B, Li X F 2016 J. Photonics Energy 6 042502Google Scholar

    [22]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [23]

    Wang L C, Liu Z Q, Yi X Y, Zhang Y Y, Li H J, Li G M, Wang G H 2016 J. Appl. Phys. 119 1685Google Scholar

    [24]

    Gromov D G, Pavlova L M, Savitsky A I, Trifonov A Y 2015 Appl. Phys. A 118 1297Google Scholar

    [25]

    Liu Z H, Ye J 2016 Nanoscale 8 17665Google Scholar

    [26]

    Marimuthu A, Zhang J W, Linic S 2013 Science 339 1590Google Scholar

    [27]

    Ji N, Ruan W D, Wang C X, Lu C, Zhao B 2009 Langmuir 25 11869Google Scholar

    [28]

    Zhang S P, Bao K, Halas N J, Xu H X, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [29]

    屈炜, 李静 2017 新技术新工艺 5 15Google Scholar

    Qu W, Li J 2017 New Technol. New Process 5 15Google Scholar

    [30]

    Zhan Y H, Lei D Y, Li X F, Maier S A 2014 Nanoscale 6 4705Google Scholar

    [31]

    张佳, 牧凯军, 王俊俏, 范春珍, 梁二军 2017 光散射学报 29 1007Google Scholar

    Zhang J, Mu K J, Wang J X, Fan C Z, Liang E J 2017 J. Light Scatt. 29 1007Google Scholar

    [32]

    Knight M W, Wu Y P, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188Google Scholar

    [33]

    Wu Y P, Nordlander P 2010 J. Phys. Chem. C 114 7302Google Scholar

    [34]

    Benjamin G, Olivier Martin J F 2011 ACS Nano 5 8999Google Scholar

    [35]

    Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H, Wu Z L, Luis M, Marzán L, Terrones M, Alù A, Zheng Y B 2018 Adv. Mater. 3 1705779Google Scholar

    [36]

    Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034Google Scholar

    [37]

    Yin J, Zang Y S, Xu B B, Li S P, Kang J Y, Fang Y Y, Wu Z H, Li J 2014 Nanoscale 6 3934Google Scholar

    [38]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [39]

    黄昕乾, 姚若河 2018 真空科学与技术学报 38 791Google Scholar

    Huang X Q, Yao R H 2018 Chin. J. Vacuum Sci. Technol. 38 791Google Scholar

    [40]

    Cristiano M, Christoph H, Luis G P J, Judith L, Agustín M, Luis M, Liz M 2018 ACS Nano 12 8531Google Scholar

  • 图 1  AAO纳米碗阵列和Ag纳米球阵列制备过程示意图 (a) 高纯铝片; (b) AAO纳米管阵列; (c) AAO纳米碗阵列; (d) Ag纳米颗粒; (e) Ag纳米球阵列

    Fig. 1.  Schematic diagram of the preparation procedure for fabricating patterned aluminum templates and Ag nanosphere arrays: (a) Purity aluminum; (b) AAO nanotube arrays after the first anodization; (c) AAO nanobowl arrays after the removal of the porous alumina layer; (d) Ag nanoparticles; (e) Ag nanosphere arrays.

    图 2  真空蒸镀实验仪器示意图

    Fig. 2.  Schematic diagram of vacuum evaporation apparatus.

    图 3  FDTD Solutions仿真模型 (a) x-y视图; (b) x-z视图

    Fig. 3.  View of simulation model in FDTD Solution (a) x-y; (b) x-z.

    图 4  (a) AAO纳米碗阵列SEM图; (b) Ag纳米球周期性阵列SEM图

    Fig. 4.  SEM images of the (a) AAO nanobowl arrays and (b) periodic arrays of Ag nanospheres.

    图 5  不同粒径(D) Ag纳米球周期性阵列/不同厚度(T) Ag膜的SEM图 (a)−(n)及相应的粒径分布直方图(i)−(x) (a) D = 73.5 nm; (b) D = 78.2 nm; (c) D = 83.2 nm; (d) D = 85.5 nm; (e) D = 87.7 nm; (f) D = 90.1 nm; (g) D = 91.3 nm; (h) D = 91.7 nm; (i) D = 93.1 nm; (j) D = 94.2 nm; (k) T = 17.5; (l) T =18.2 nm; (m) T = 19.0 nm; (n) T = 19.7 nm

    Fig. 5.  (a)−(n) SEM images of Ag nanosphere arrays/Ag film and (i)−(x) their related size distribution histograms: (a) D = 73.5 nm; (b) D = 78.2 nm; (c) D = 83.2 nm; (d) D = 85.5 nm; (e) D = 87.7 nm; (f) D = 90.1 nm; (g) D = 91.3 nm; (h) D = 91.7 nm; (i) D = 93.1 nm; (j) D = 94.2 nm; (k) T = 17.5 nm; (l) T = 18.2 nm; (m) T = 19.0 nm; (n) T = 19.7 nm.

    图 6  (a) 沉积在AAO纳米碗上不同粒径Ag纳米球阵列UV-vis-NIR实验所得吸收光谱; (b) 不同衬底制备的银复合结构的吸收光谱

    Fig. 6.  Experimental UV-vis-NIR absorption spectra of (a) Ag nanosphere arrays deposited on AAO-nanobowl with different sizes; (b) silver composite structure fabricated on different substrates.

    图 7  (a) UV-Vis波段不同粒径Ag纳米球阵列实验所得吸收光谱和(b) FDTD模拟吸收光谱

    Fig. 7.  UV-Vis absorption spectra of Ag nanosphere arrays with different sizes: (a) Experimental results; (b) FDTD simulation results

    图 8  (a)紫外波段Ag纳米颗粒实验测得吸收光谱(黑色虚线), 以及根据(3)式拟合得到的吸收光谱(红色); (b) Ag纳米球阵列在437 nm波长下x-y平面(z = 0)的极化电场分布

    Fig. 8.  (a) UV absorption spectra of Ag nanosphere arrays (black dashed line is experimental results; red line corresponds to σt obtained by fitting the Eq. (3); (b) polarized field distributions on the x-y plane (z = 0) of the Ag nano-sphere array excited 437 nm.

    图 9  (a) NIR波段不同粒径Ag纳米球阵列实验所得吸收光谱和(b) FDTD理论模拟吸收光谱

    Fig. 9.  NIR absorption spectra of Ag nanosphere arrays with different sizes: (a) Experimental results; (b) FDTD simulation results.

  • [1]

    Wang S Q, Xu L P, Wen Y Q, Du H W, Wang S T, Zhang X J 2013 Nanoscale 5 4284Google Scholar

    [2]

    Shipway A N, Katz E, Willner I 2000 ChemPhysChem 1 18Google Scholar

    [3]

    Prakash J, Harris R A, Swart H C 2016 Int. Rev. Phys. Chem. 35 353Google Scholar

    [4]

    Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H 2013 Angew. Chem. Int. Ed. 52 7446Google Scholar

    [5]

    Yan B, Yang X X, Fang J Y, Huang Y D, Qin H, Qin S Q 2015 Chin. Phys. B 24 15203Google Scholar

    [6]

    张喆, 柳倩, 祁志美 2013 物理学报 62 060703Google Scholar

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703Google Scholar

    [7]

    Offermans P, Schaafsma M C, Rodriguez S R K, Zhang Y C, Crego-Calama M, Brongersma S H, Rivas J G 2015 ACS Nano 5 5151

    [8]

    Ren K, Yin P, Zhou Y, Cao X, Dong C, Cui L, Liu H, Du X 2017 Small 13 1700867Google Scholar

    [9]

    Mi Y, Wen L Y, Xu R, Wang Z J, Cao D W, Fang Y G, Lei Y 2016 Adv. Energy Mater. 6 1501496Google Scholar

    [10]

    叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷 2014 物理学报 65 087802Google Scholar

    Ye S, Wang X, Hou Y D, Zhang Z Y, Du J L 2014 Acta Phys. Sin. 65 087802Google Scholar

    [11]

    Zhang J, Dong L, Yu S H 2015 Sci. Bull. 60 785Google Scholar

    [12]

    Khan Y, Li A R, Chang L, Li L D 2018 Sens. Actuator, B 255 1298Google Scholar

    [13]

    Xiong B, Zhou R, Hao J R, Jia Y H, He Y, Yeung E S 2013 Nat. Commun. 4 1708Google Scholar

    [14]

    Jung H Y, Yeo I S, Kim T U, Ki H C, Gu H B 2018 Appl. Surf. Sci. 432 266Google Scholar

    [15]

    Wu K, Li T, Schmidt M S, Rindzevicius T, Boisen A, Ndoni S 2018 Adv. Funct. Mater. 28 1704818Google Scholar

    [16]

    Zhan Z B, Xu R, Mi Y, Zhao H P, Lei Y 2015 ACS Nano 9 4583Google Scholar

    [17]

    Ji N, Ruan W D, Li Z S, Wang C X, Yang Z, Zhao B 2013 J. Raman Spectrosc. 44 1Google Scholar

    [18]

    King N S, Liu L F, Yang X, Cerjan B, Everitt H O, Nordlander P, Halas N J 2015 ACS Nano 9 10628Google Scholar

    [19]

    Zhan Z B, Xu R, Zheng X Z, Fu Q, Wu M H, Lei Y 2016 Nanotechnol. 27 445301Google Scholar

    [20]

    Minamimoto H, Oikawa S, Hayashi T, Shibazaki A, Li X W, Murakoshi K 2018 J. Phys. Chem. C 122 14162Google Scholar

    [21]

    Zhang C, Wu K, Ling B, Li X F 2016 J. Photonics Energy 6 042502Google Scholar

    [22]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Palafox M A, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [23]

    Wang L C, Liu Z Q, Yi X Y, Zhang Y Y, Li H J, Li G M, Wang G H 2016 J. Appl. Phys. 119 1685Google Scholar

    [24]

    Gromov D G, Pavlova L M, Savitsky A I, Trifonov A Y 2015 Appl. Phys. A 118 1297Google Scholar

    [25]

    Liu Z H, Ye J 2016 Nanoscale 8 17665Google Scholar

    [26]

    Marimuthu A, Zhang J W, Linic S 2013 Science 339 1590Google Scholar

    [27]

    Ji N, Ruan W D, Wang C X, Lu C, Zhao B 2009 Langmuir 25 11869Google Scholar

    [28]

    Zhang S P, Bao K, Halas N J, Xu H X, Nordlander P 2011 Nano Lett. 11 1657Google Scholar

    [29]

    屈炜, 李静 2017 新技术新工艺 5 15Google Scholar

    Qu W, Li J 2017 New Technol. New Process 5 15Google Scholar

    [30]

    Zhan Y H, Lei D Y, Li X F, Maier S A 2014 Nanoscale 6 4705Google Scholar

    [31]

    张佳, 牧凯军, 王俊俏, 范春珍, 梁二军 2017 光散射学报 29 1007Google Scholar

    Zhang J, Mu K J, Wang J X, Fan C Z, Liang E J 2017 J. Light Scatt. 29 1007Google Scholar

    [32]

    Knight M W, Wu Y P, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188Google Scholar

    [33]

    Wu Y P, Nordlander P 2010 J. Phys. Chem. C 114 7302Google Scholar

    [34]

    Benjamin G, Olivier Martin J F 2011 ACS Nano 5 8999Google Scholar

    [35]

    Wang M S, Krasnok A, Zhang T Y, Scarabelli L, Liu H, Wu Z L, Luis M, Marzán L, Terrones M, Alù A, Zheng Y B 2018 Adv. Mater. 3 1705779Google Scholar

    [36]

    Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034Google Scholar

    [37]

    Yin J, Zang Y S, Xu B B, Li S P, Kang J Y, Fang Y Y, Wu Z H, Li J 2014 Nanoscale 6 3934Google Scholar

    [38]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [39]

    黄昕乾, 姚若河 2018 真空科学与技术学报 38 791Google Scholar

    Huang X Q, Yao R H 2018 Chin. J. Vacuum Sci. Technol. 38 791Google Scholar

    [40]

    Cristiano M, Christoph H, Luis G P J, Judith L, Agustín M, Luis M, Liz M 2018 ACS Nano 12 8531Google Scholar

  • [1] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [3] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [4] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [5] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻. 物理学报, 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [6] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [7] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究. 物理学报, 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 席发元, 吕会议. 不同 Ep/q 值的离子与氧化铝毛细孔的相互作用. 物理学报, 2013, 62(1): 016104. doi: 10.7498/aps.62.016104
    [10] 戴隆贵, 禤铭东, 丁芃, 贾海强, 周均铭, 陈弘. 一种简单高效的制备硅纳米孔阵结构的方法. 物理学报, 2013, 62(15): 156104. doi: 10.7498/aps.62.156104
    [11] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [12] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [13] 吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋. 新型氧化铝模板自组装制备非晶碳纳米点阵列膜及其场发射性能研究. 物理学报, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [14] 黄茜, 王京, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [15] 李会峰, 高祥熙, 黄运华, 王建, 张跃, 赵婧. 掺铟氧化锌纳米阵列的制备、结构及性质研究. 物理学报, 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
    [16] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究. 物理学报, 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [17] 王成伟, 王 建, 李 燕, 刘维民, 徐 洮, 孙小伟, 力虎林. 多孔阳极氧化铝薄膜光学常数的确定. 物理学报, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [18] 王 森, 俞国军, 巩金龙, 朱德彰, 何绥霞, 朱志远, 徐洪杰. 碳纳米管的氧化铝模板法合成及其退火效应研究. 物理学报, 2005, 54(10): 4949-4954. doi: 10.7498/aps.54.4949
    [19] 李 燕, 王成伟, 田 军, 刘维民, 陈 淼, 力虎林. 钴/氧化铝纳米有序阵列复合结构的光学特性研究. 物理学报, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [20] 刘虹雯, 郭海明, 王业亮, 申承民, 杨海涛, 王雨田, 魏 龙. 阳极氧化铝模板表面自组织条纹的形成. 物理学报, 2004, 53(2): 656-660. doi: 10.7498/aps.53.656
计量
  • 文章访问数:  9394
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-02
  • 修回日期:  2020-01-03
  • 刊出日期:  2020-03-20

/

返回文章
返回