搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Er光纤飞秒激光器中电光晶体对激光器参数的影响

曹士英 林百科 袁小迪 丁永今 孟飞 方占军

引用本文:
Citation:

掺Er光纤飞秒激光器中电光晶体对激光器参数的影响

曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军

Influence of electro-optic modulator on Er-doped fiber femtosecond laser

Cao Shi-Ying, Lin Bai-Ke, Yuan Xiao-Di, Ding Yong-Jin, Meng Fei, Fang Zhan-Jun
PDF
HTML
导出引用
  • 由于受增益介质上能级寿命的影响, 掺Er光纤光梳的梳齿线宽一般在百kHz量级. 为了实现光梳梳齿线宽的压窄, 一种有效的方法是在激光器中增加快速响应的电光晶体, 使光纤光梳的伺服锁定带宽提高到百kHz以上, 为光纤光梳的快速伺服锁定提供反馈机构. 这其中, 高品质的飞秒激光器是核心. 基于此, 本文主要研究了掺Er光纤飞秒激光器中电光晶体对激光器参数的影响. 通过计算电光晶体的折射率、色散、相位延迟等参数, 分析了电光晶体对激光器参数的影响, 并在实验上获得了电光晶体电压对激光器重复频率和载波包络偏移频率的影响, 进而通过电光晶体实现了对光纤光梳重复频率和载波包络偏移频率的锁定. 通过锁定光纤飞秒激光器与窄线宽激光器的拍频信号, 验证了电光晶体的引入使激光器的伺服锁定带宽提高到了236 kHz, 为窄线宽飞秒光学频率梳的建立提供了技术基础.
    Narrow-linewidth femtosecond optical frequency comb plays an important role in the fields, such as optical clock comparison, time frequency transfer, ultrastable microwave generation, absolute distance measurement, high precision spectroscopy, etc. Due to the influence of the lifetime of the upper energy level in the gain medium, the linewidth of Er-fiber combs is generally on the order of several hundred kilohertz. In order to narrow the linewidth of comb teeth, an effective method is to insert a fast response electro-optic modulator (EOM) into the laser cavity, so that the servo bandwidth of fiber comb is extended to several hundred kilohertz, which provides a feedback mechanism for fast servo locking. Among them, a high quality femtosecond laser is the core. Based on this, the influence of the EOM on the parameters of Er-fiber femtosecond laser is studied in this paper. By calculating the refractive index, group velocity dispersion, and phase delay of the electro-optic crystal, the influence of the introduction of the EOM on the laser performance is analyzed. A LiNbO3 (LN) crystal with a length of 3 mm and x-cut is selected as the EOM and inserted into the laser cavity. The influence of the applied voltage of the EOM on the repetition rate and carrier envelope offset frequency of the laser are obtained experimentally. When the voltage on the LN crystal changes from -200 to 200 V, the adjustment of repetition rate is 60 Hz and the carrier envelope offset frequency is 25 MHz. Then the two parameters are phase locked through the EOM. Furthermore, by phase locking the beat note between the fiber comb and a narrow-linewidth continue wavelength laser at 1542 nm, it is verified that the introduction of the EOM can expand the servo bandwidth of the laser to more than 236 kHz, which provides a technical basis for establishing narrow linewidth femtosecond optical frequency combs. The following work will verify the performance of comb line, that is, when the comb is locked to a narrow-linewidth laser (such as 1542 nm), the performance of comb line at wavelength (such as 698, 729 nm, and so on) of distant place will be analyzed in detail.
      通信作者: 曹士英, caoshiying@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0200204)资助的课题
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFF0200204)
    [1]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [2]

    Liu T A, Shu R H, Peng J L 2008 Opt. Express 16 10728Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 434Google Scholar

    [4]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y. L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [5]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [6]

    Picqué N, Hänsch T W 2019 Nat. Photonics 13 146Google Scholar

    [7]

    McCracken R A, Charsley J M, Reid D T 2017 Opt. Express 25 15058Google Scholar

    [8]

    Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K, Newbury N R 2014 Opt. Express 22 6996Google Scholar

    [9]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger O, Lampmann K, Hülsing T, Hänsch T W, and Holzwarth R 2016 Optica 3 1381Google Scholar

    [10]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [11]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G, Coq Y L 2014 Nat. Photonics 8 219Google Scholar

    [14]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J 2005 Opt. Lett. 30 2948Google Scholar

    [15]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [16]

    Torcheboeuf N, Buchs G, Kundermann S, Portuondo-Campa E, Bennès J, Lecomte S 2017 Opt. Express 25 2215Google Scholar

    [17]

    Schweyer S M, Eder B, Putzer P, Mayerbacher M, Lemke N, Schreiber K U, Hugentobler U, Kienberger R 2018 Opt. Express 26 23798Google Scholar

    [18]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [19]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [20]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [21]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205Google Scholar

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205Google Scholar

    [22]

    Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M, Hong F L 2019 Opt. Express 27 6404Google Scholar

    [23]

    Kim Y, Kim S, Kim Y J, Hussein H, Kim S W 2009 Opt. Express 17 11972Google Scholar

    [24]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H R 2004 Opt. Express 12 770Google Scholar

    [25]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jørgensen C G 2004 Opt. Express 12 4999Google Scholar

  • 图 1  LN晶体的折射率曲线

    Fig. 1.  Refractive index curves of LiNbO3 crystal.

    图 2  LN晶体的群速度色散曲线

    Fig. 2.  Group velocity dispersion curves of LiNbO3 crystal.

    图 3  腔内加入EOM的掺Er光纤光梳结构图. 其中, LD为激光二极管, WDM为980 nm/1550 nm波分复用器件, EDF为增益光纤, Col为光纤准直器, PBS为偏振分光片, ISO为隔离器, λ/4为四分之一波片, λ/2为二分之一波片, M为平面反射镜, PZT为压电陶瓷, EOM为电光晶体调制器, HNLF为高非线性光纤, F为透镜, PD为光电探测器, PPL为伺服锁定环路, PPLN为周期极化LN晶体, SW为微波线切换模块

    Fig. 3.  Schematic diagram of the Er-fiber comb with an intra-cavity EOM. LD, laser diode; WDM, 980 nm/1550 nm wavelength division multiplexing; EDF, Er-doped gain fiber; Col, fiber collimator; PBS, polarization beam splitter; ISO, isolator; λ/4, quarter wave plate; λ/2, half wave plate; M, plane mirror; PZT, piezoelectric transducer; EOM, electro-optic modulator; HNLF, highly nonlinear fiber; F, optical lens; PD, photoelectric diode; PPL, phase lock loop; PPLN, Periodically Poled Lithium Niobate; SW, signal switch module

    图 4  激光器腔内有无EOM时的锁模光谱

    Fig. 4.  Spectra of the Er-fiber femtosecond laser with and without an intra-cavity EOM.

    图 5  激光器中加入EOM锁模后的射频曲线, 其中插图为163 MHz处的频谱

    Fig. 5.  Radio frequency of the Er-fiber femtosecond laser with an intra-cavity EOM. The insert is the radio frequency at 163 MHz.

    图 6  激光器载波包络偏移频率, 插图为扩谱后的倍频程光谱图

    Fig. 6.  Signal-to-noise ratio of carrier-envelop offset frequency in 100 kHz resolution bandwidth (RBW). The insert is octave spanning spectrum after HNLF.

    图 7  EOM晶体电压对激光器参数的影响 (a) EOM晶体电压对激光器重复频率的影响; (b) EOM晶体电压对激光器载波包络偏移频率的影响

    Fig. 7.  Diagram showing the change in laser parameters at different voltage on EOM: (a) The change in repetition rate; (b) the change in carrier envelope offset frequency.

    图 8  EOM晶体电压改变时, 激光器输出光谱变化

    Fig. 8.  Evolution of the spectra of the Er-fiber femtosecond laser with the changing of the voltage on EOM.

    图 9  激光器自由运转时, 重复频率漂移

    Fig. 9.  Frequency drift of the repetition rate.

    图 10  重复频率锁定后的频率变化 (a) 采用EOM锁定重复频率; (b) 采用PZT锁定重复频率

    Fig. 10.  Residual fluctuations of the repetition rate when it is phase-locked: (a) Phase-locked by EOM; (b) phase-locked by PZT.

    图 11  采用EOM和PZT锁定重复频率后, 所获得的重复频率的相对Allan偏差曲线

    Fig. 11.  Calculated Allan deviations when the repetition rate was phase-locked by EOM and PZT respectively.

    图 12  自由运转时f0信号漂移曲线

    Fig. 12.  Frequency drift of the carrier envelope offset frequency.

    图 13  采用EOM锁定f0信号后的频率变化

    Fig. 13.  Residual fluctuations of the carrier envelope offset frequency when it is phase-locked by EOM.

    图 14  飞秒激光器与1542 nm的单频激光的拍频信号 (a) 采用PZT锁定后的拍频信号, 其中分辨率带宽为100 kHz; (b) 采用EOM锁定后的拍频信号, 其中分辨率带宽为1 kHz

    Fig. 14.  Beat note between the Er-fiber comb and a 1542 nm laser: (a) Spectrum of the in-loop fb after phase-locking with PZT in 100 kHz RBW; (b) spectrum of the in-loop fb after phase-locking with EOM in 1 kHz RBW.

    图 15  光梳与1542 nm激光拍频信号fb锁定后的频率变化

    Fig. 15.  Residual fluctuations of the beat note when the Er-fiber comb was phase-locked to a 1542 nm laser.

  • [1]

    Fortier T, Baumann E 2019 Commun. Phys. 2 153Google Scholar

    [2]

    Liu T A, Shu R H, Peng J L 2008 Opt. Express 16 10728Google Scholar

    [3]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 434Google Scholar

    [4]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y. L, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [5]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [6]

    Picqué N, Hänsch T W 2019 Nat. Photonics 13 146Google Scholar

    [7]

    McCracken R A, Charsley J M, Reid D T 2017 Opt. Express 25 15058Google Scholar

    [8]

    Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K, Newbury N R 2014 Opt. Express 22 6996Google Scholar

    [9]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger O, Lampmann K, Hülsing T, Hänsch T W, and Holzwarth R 2016 Optica 3 1381Google Scholar

    [10]

    Nakajima Y, Inaba H, Hosaka K, Minoshima K, Onae A, Yasuda M, Kohno T, Kawato S, Kobayashi T, Katsuyama T, Hong F L 2010 Opt. Express 18 1667Google Scholar

    [11]

    Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photonics 2 355Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Nicolodi D, Argence B, Zhang W, Targat R L, Santarelli G, Coq Y L 2014 Nat. Photonics 8 219Google Scholar

    [14]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J 2005 Opt. Lett. 30 2948Google Scholar

    [15]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [16]

    Torcheboeuf N, Buchs G, Kundermann S, Portuondo-Campa E, Bennès J, Lecomte S 2017 Opt. Express 25 2215Google Scholar

    [17]

    Schweyer S M, Eder B, Putzer P, Mayerbacher M, Lemke N, Schreiber K U, Hugentobler U, Kienberger R 2018 Opt. Express 26 23798Google Scholar

    [18]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [19]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [20]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [21]

    曹士英, 孟飞, 林百科, 方占军, 李天初 2012 物理学报 61 134205Google Scholar

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 134205Google Scholar

    [22]

    Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M, Hong F L 2019 Opt. Express 27 6404Google Scholar

    [23]

    Kim Y, Kim S, Kim Y J, Hussein H, Kim S W 2009 Opt. Express 17 11972Google Scholar

    [24]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H R 2004 Opt. Express 12 770Google Scholar

    [25]

    Washburn B R, Fox R W, Newbury N R, Nicholson J W, Feder K, Westbrook P S, Jørgensen C G 2004 Opt. Express 12 4999Google Scholar

  • [1] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [2] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [3] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究. 物理学报, 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [4] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [5] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [6] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [7] 邢颍滨, 叶宝圆, 蒋作文, 戴能利, 李进延. 高效率掺Tm3+双包层光纤及光纤激光器的研制. 物理学报, 2014, 63(1): 014209. doi: 10.7498/aps.63.014209
    [8] 曹士英, 孟飞, 方占军, 李天初. 掺Er光纤飞秒激光器中高信噪比载波包络位相偏移频率获取的实验研究. 物理学报, 2012, 61(6): 064208. doi: 10.7498/aps.61.064208
    [9] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [10] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [11] 曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初. 掺Er光纤飞秒激光器载波包络位相偏移的探测. 物理学报, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [12] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [13] 陈子伦, 周 朴, 许晓军, 侯 静, 姜宗福. 谱线和耦合系数对光纤激光器相互注入锁定的影响. 物理学报, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [14] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [15] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定. 物理学报, 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [16] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [17] 陈子伦, 侯 静, 周 朴, 刘 亮, 姜宗福. 两个光纤激光器的互相注入锁定. 物理学报, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [18] 黄绣江, 刘永智, 隋 展, 李明中, 李 忻, 林宏奂, 王建军. 全光纤超短脉冲掺Yb3+光纤环形激光器. 物理学报, 2006, 55(3): 1191-1195. doi: 10.7498/aps.55.1191
    [19] 孙军强, 黄德修, 李再光. 掺铒光纤激光器的自持脉冲. 物理学报, 1996, 45(6): 960-965. doi: 10.7498/aps.45.960
    [20] 胡恺生, 李宗祥, 宁鼎, 李浩, 周建平, 刘为民. 掺Er3+光纤的γ射线辐射特性. 物理学报, 1992, 41(6): 890-897. doi: 10.7498/aps.41.890
计量
  • 文章访问数:  3833
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-11-09
  • 上网日期:  2021-03-24
  • 刊出日期:  2021-04-05

/

返回文章
返回