搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

啁啾脉冲放大激光系统中展宽器色散的解析算法

王楠 阮双琛

引用本文:
Citation:

啁啾脉冲放大激光系统中展宽器色散的解析算法

王楠, 阮双琛

Analytical algorithem of stretcher dispersion in chirp pulse amplification laser system

Wang Nan, Ruan Shuang-Chen
PDF
HTML
导出引用
  • 时域色散精密控制是超短激光产生及其应用中的关键技术之一, 它通过控制各波长的光程产生相对延迟从而改变脉冲宽度. 展宽器是啁啾脉冲放大激光系统中对激光脉冲展宽的装置, 基于光线追迹法研究光线在展宽器中的传输路径, 可计算飞秒脉冲中各波长的光程, 进而计算脉冲展宽量并应用于系统设计. 由于展宽器的光程表达式复杂, 直接对其求导获得色散表达式较困难, 目前只能采用数值导数获得近似解, 这在计算过程中会引入误差, 不利于激光系统精确设计和优化. 本文介绍了一种易实现的求解展宽器色散的解析算法, 通过归纳展宽器光程表达式特点, 引入四个基元函数, 将光程表达式分解和反复代换, 可得到高阶色散的精确解析值. 本文首先对Martinez型展宽器重新光线追迹, 获得与Offner型展宽器一致的相位表达式, 其次通过解析算法获得了两种展宽器的精确高阶色散值, 最后将解析算法与数值算法的结果进行了比较. 该解析算法对于啁啾脉冲放大系统的参数设计具有实用价值.
    Dispersion control is one of many key techniques in ultrashort laser pulse generation and its applications. By controlling the optical path of wavelength in the laser pulse to generate relative time delay, the pulse width of laser can be changed. The stretcher is the optical scheme to broaden the pulse width in chirp pulse amplification. By using ray trace, the pulse stretch time can be evaluated. However, due to the complicated formula of optical path in stretcher, it is difficult to obtain an analytical expression of high-order dispersion by using direct derivative. In this case, the present numerical methods are commonly used and error would be introduced into the optical system design and optimization inevitably. In this paper we introduce an analytical algorithm of stretcher dispersion. By summarizing the characteristic of stretcher formula, four fundamental functions are introduced to help to calculate the analytical derivative. By substituting the separate terms of the expressions step by step, analytical calculation of stretcher dispersion can be realized. In this paper, the ray trace of Martinez stretcher is first introduced to achieve similar phase expressions to them of existing Offner stretcher, then accurate high order dispersion results are attained by using analytical method, finally the calculation results by using the analytical method and numerical method are compared with each other. The algorithm introduced into this paper for calculating the dispersion is practical and hopeful in designing the chirp pulse amplification laser systems.
      通信作者: 阮双琛, scruan@szu.edu.cn
    • 基金项目: 深圳大学新引进教师科研启动项目(批准号: 2017020)和深圳市科技创新基础研究(自由探索)项目(批准号: JCYJ20170818142940246)资助的课题
      Corresponding author: Ruan Shuang-Chen, scruan@szu.edu.cn
    • Funds: Project supported by the Start-up Project of Scientific Research for New Teachers of Shenzhen University, China (Grant No. 2017020) and the Science and Technology Plan Project of Shenzhen, China (Grant No. JCYJ20170818142940246)
    [1]

    Li W, Gan Z, Yu L, Wang C, Liu Y, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J, Huang P, Cao H, Yao B, Zhang X, Chen L, Tang Y, Li S, Liu X, Li S, He M, Yin D, Liang X, Leng Y, Li R, Xu Z 2018 Opt. Lett. 43 5681Google Scholar

    [2]

    Liu H, Deng X, Tong S, He C, Cheng H, Zhuang Z, Gan M, Li J, Xie W, Qiu P, Wang K 2019 Nano Lett. 19 5260Google Scholar

    [3]

    秦爽, 宁笑楠, 陈九成 2019 光子学报 48 0914001Google Scholar

    Qin S, Ning X N, Chen J C 2019 Acta Phot. Sin. 48 0914001Google Scholar

    [4]

    Treacy E 1969 IEEE J. Quantum Electron. 5 454Google Scholar

    [5]

    Fork R, Martinez O, Gordon J 1984 Opt. Lett. 9 150Google Scholar

    [6]

    Martinez O, Gordon J, Fork R 1984 J. Opt. Soc. Am. A 1 1003Google Scholar

    [7]

    张留洋, 金海洋, 曲玉秋, 浦绍质, 黄金哲, 汪东升, 杨莹 2016 激光与光电子学进展 53 102202

    Zhang L Y, Jin H Y, Qu Y Q, Pu S Z, Huang J Z, Wang D S, Yang Y 2016 Laser & Optoelectronics Progress 53 102202

    [8]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B 14 661Google Scholar

    [9]

    Durfee C, Squier J, Kane S 2008 Opt. Express 16 18004Google Scholar

    [10]

    郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义 2013 物理学报 62 094202Google Scholar

    Guo S Y, Ye P, Teng H, Zhang W, Li D H, Wang Z H, Wei Z Y 2013 Acta Phys. Sin. 62 094202Google Scholar

    [11]

    徐婷婷, 孙美智, 杨庆伟, 王楠楠, 郭爱林, 康俊, 朱海东, 谢兴龙 2013 光学学报 33 0532002Google Scholar

    Xu T T, Sun M Z, Yang Q W, Wang N N, Guo A L, Kang J, Zhu H D, Xie X L 2013 Acta Opt. Sin. 33 0532002Google Scholar

    [12]

    苏娟, 刘忠华, 魏涛, 李菊芬 2015 激光与光电子进展 52 060501

    Su J, Liu Z H, Wei T, Li J F 2015 Laser & Optoelectronics Progress 52 060501

    [13]

    Bucht S, Haberberger D, Bromage J, Froula D H 2019 J. Opt. Soc. Am. B 36 2325Google Scholar

    [14]

    Cheriaux G, Rousseau P, Salin F, Chambaret J 1996 Opt. Lett. 21 414Google Scholar

    [15]

    Zhang Z, Songa Y, Suna D, Chaia L, Sunb H, Wang C 2002 Opt. Commun. 206 7Google Scholar

    [16]

    Jiang J, Zhang Z, Hasama T 2002 J. Opt. Soc. Am. B 19 678

    [17]

    Wang H, Liu H, Xiong H, Zhu S, Zhao W, Wang Y, Chen G 2005 High Power Laser and Particle Beams 17 1359

    [18]

    田金荣, 孙敬华, 魏志义, 王兆华, 令维军, 黄小军, 刘兰亭, 魏晓峰, 张杰 2005 物理学报 54 1200Google Scholar

    Tian J R, Sun J H, Wei Z Y, Wang Z H, Ling W J, Huang X J, Liu L T, Wei X F, Zhang J 2005 Acta Phys. Sin. 54 1200Google Scholar

    [19]

    Martinez O 1987 IEEE J. Quantum Electron. 23 59Google Scholar

    [20]

    Zhang Z, Yagi T, Arisawa T 1997 Appl. Opt. 36 3393Google Scholar

    [21]

    王勇, 王清月, 柴路, 张伟力, 邢岐荣 2000 量子电子学报 17 193Google Scholar

    Wang Y, Wang Q Y, Chai L, Zhang W L, Xing Q R 2000 Chin. J. Quant. Elect. 17 193Google Scholar

    [22]

    宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581Google Scholar

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581Google Scholar

    [23]

    Su H, Peng Y J, Li Y Y, Lu X Y, Chen J C, Wang P F, Lv X L, Shao B J, Leng Y X 2019 Opt. Lett. 44 1980Google Scholar

    [24]

    孙大睿, 宋晏蓉, 张志刚, 刘永军, 柴路, 王清月 2003 物理学报 52 870Google Scholar

    Sun D R, Song Y R, Zhang Z G, Liu Y J, Chai L, Wang Q Y 2003 Acta Phys. Sin. 52 870Google Scholar

    [25]

    Backus S, Durfee C, Murnane M, Kapteyn H 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [26]

    张志刚, 孙虹 2001 物理学报 50 1080Google Scholar

    Zhang Z G, Sun H 2001 Acta Phys. Sin. 50 1080Google Scholar

  • 图 1  Offner型展宽器的结构与光路图

    Fig. 1.  Scheme of Offner stretcher.

    图 2  Martinez型展宽器的结构与光路图

    Fig. 2.  Scheme of Martinez Stretcher.

    图 3  Offner型与Martinez型展宽器700−900 nm的解析计算色散曲线 (a) GD; (b) GDD; (c) TOD; (d) FOD

    Fig. 3.  Analytical dispersion results of Offner and Martinez stretcher: (a) GD; (b) GDD; (c) TOD; (d) FOD.

    图 4  (a) Offner型展宽器的二阶色散值; (b) Martinez型展宽器的二阶色散值; (c) Offner型展宽器的四阶色散值; (d) Martinez型展宽器的四阶色散值. 图中蓝色实线为解析计算值, 红色点线是步长为0.1 nm的数值计算值, 黑色虚线是步长为5 nm的数值计算值

    Fig. 4.  (a) GDD of Offner stretcher; (b) GDD of Martinez stretcher; (c) FOD of Offner stretcher; (d) FOD of Martinez stretcher. Blue solid lines in the figure are analytical results; red dotted lines are numerical results with step of 0.1 nm; black dash lines are numerical results with step of 5 nm.

    表 1  用于计算的Offner型与Martinez型展宽器参数

    Table 1.  Structural parameters of Offner and Martinez stretchers.

    计算参数Offner型
    展宽器
    Martinez型
    展宽器
    凹面镜曲率半径R/mm12101210
    光栅凹面镜间距L/mm1005400
    激光光栅入射角γ0/(°)2222
    光栅刻线密度/mm–112001200
    展宽程数22
    下载: 导出CSV
  • [1]

    Li W, Gan Z, Yu L, Wang C, Liu Y, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J, Huang P, Cao H, Yao B, Zhang X, Chen L, Tang Y, Li S, Liu X, Li S, He M, Yin D, Liang X, Leng Y, Li R, Xu Z 2018 Opt. Lett. 43 5681Google Scholar

    [2]

    Liu H, Deng X, Tong S, He C, Cheng H, Zhuang Z, Gan M, Li J, Xie W, Qiu P, Wang K 2019 Nano Lett. 19 5260Google Scholar

    [3]

    秦爽, 宁笑楠, 陈九成 2019 光子学报 48 0914001Google Scholar

    Qin S, Ning X N, Chen J C 2019 Acta Phot. Sin. 48 0914001Google Scholar

    [4]

    Treacy E 1969 IEEE J. Quantum Electron. 5 454Google Scholar

    [5]

    Fork R, Martinez O, Gordon J 1984 Opt. Lett. 9 150Google Scholar

    [6]

    Martinez O, Gordon J, Fork R 1984 J. Opt. Soc. Am. A 1 1003Google Scholar

    [7]

    张留洋, 金海洋, 曲玉秋, 浦绍质, 黄金哲, 汪东升, 杨莹 2016 激光与光电子学进展 53 102202

    Zhang L Y, Jin H Y, Qu Y Q, Pu S Z, Huang J Z, Wang D S, Yang Y 2016 Laser & Optoelectronics Progress 53 102202

    [8]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B 14 661Google Scholar

    [9]

    Durfee C, Squier J, Kane S 2008 Opt. Express 16 18004Google Scholar

    [10]

    郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义 2013 物理学报 62 094202Google Scholar

    Guo S Y, Ye P, Teng H, Zhang W, Li D H, Wang Z H, Wei Z Y 2013 Acta Phys. Sin. 62 094202Google Scholar

    [11]

    徐婷婷, 孙美智, 杨庆伟, 王楠楠, 郭爱林, 康俊, 朱海东, 谢兴龙 2013 光学学报 33 0532002Google Scholar

    Xu T T, Sun M Z, Yang Q W, Wang N N, Guo A L, Kang J, Zhu H D, Xie X L 2013 Acta Opt. Sin. 33 0532002Google Scholar

    [12]

    苏娟, 刘忠华, 魏涛, 李菊芬 2015 激光与光电子进展 52 060501

    Su J, Liu Z H, Wei T, Li J F 2015 Laser & Optoelectronics Progress 52 060501

    [13]

    Bucht S, Haberberger D, Bromage J, Froula D H 2019 J. Opt. Soc. Am. B 36 2325Google Scholar

    [14]

    Cheriaux G, Rousseau P, Salin F, Chambaret J 1996 Opt. Lett. 21 414Google Scholar

    [15]

    Zhang Z, Songa Y, Suna D, Chaia L, Sunb H, Wang C 2002 Opt. Commun. 206 7Google Scholar

    [16]

    Jiang J, Zhang Z, Hasama T 2002 J. Opt. Soc. Am. B 19 678

    [17]

    Wang H, Liu H, Xiong H, Zhu S, Zhao W, Wang Y, Chen G 2005 High Power Laser and Particle Beams 17 1359

    [18]

    田金荣, 孙敬华, 魏志义, 王兆华, 令维军, 黄小军, 刘兰亭, 魏晓峰, 张杰 2005 物理学报 54 1200Google Scholar

    Tian J R, Sun J H, Wei Z Y, Wang Z H, Ling W J, Huang X J, Liu L T, Wei X F, Zhang J 2005 Acta Phys. Sin. 54 1200Google Scholar

    [19]

    Martinez O 1987 IEEE J. Quantum Electron. 23 59Google Scholar

    [20]

    Zhang Z, Yagi T, Arisawa T 1997 Appl. Opt. 36 3393Google Scholar

    [21]

    王勇, 王清月, 柴路, 张伟力, 邢岐荣 2000 量子电子学报 17 193Google Scholar

    Wang Y, Wang Q Y, Chai L, Zhang W L, Xing Q R 2000 Chin. J. Quant. Elect. 17 193Google Scholar

    [22]

    宋晏蓉, 张志刚, 王清月 2003 物理学报 52 581Google Scholar

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581Google Scholar

    [23]

    Su H, Peng Y J, Li Y Y, Lu X Y, Chen J C, Wang P F, Lv X L, Shao B J, Leng Y X 2019 Opt. Lett. 44 1980Google Scholar

    [24]

    孙大睿, 宋晏蓉, 张志刚, 刘永军, 柴路, 王清月 2003 物理学报 52 870Google Scholar

    Sun D R, Song Y R, Zhang Z G, Liu Y J, Chai L, Wang Q Y 2003 Acta Phys. Sin. 52 870Google Scholar

    [25]

    Backus S, Durfee C, Murnane M, Kapteyn H 1998 Rev. Sci. Instrum. 69 1207Google Scholar

    [26]

    张志刚, 孙虹 2001 物理学报 50 1080Google Scholar

    Zhang Z G, Sun H 2001 Acta Phys. Sin. 50 1080Google Scholar

  • [1] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大. 物理学报, 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [2] 赵丹, 王逍, 母杰, 左言磊, 周松, 周凯南, 曾小明, 李志林, 粟敬钦, 朱启华. 拼接型光栅对压缩器中刻线密度差对输出脉冲的影响及补偿方案. 物理学报, 2017, 66(2): 024201. doi: 10.7498/aps.66.024201
    [3] 时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和. 基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性. 物理学报, 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [4] 刘宝林, 贾维国, 王玉平, 乔海龙, 王旭东, 门克内木乐. 色散条件下各向同性光纤中拉曼增益对光脉冲自陡峭的影响. 物理学报, 2014, 63(21): 214207. doi: 10.7498/aps.63.214207
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究. 物理学报, 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [7] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究. 物理学报, 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [8] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿. 物理学报, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [9] 王胭脂, 邵建达, 董洪成, 晋云霞, 贺洪波, 易葵, 范正修, 宋有建, 胡明列, 柴路, 王清月. 钛宝石激光器9.5 fs脉冲输出中的啁啾镜色散补偿. 物理学报, 2011, 60(1): 018101. doi: 10.7498/aps.60.018101
    [10] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列. 物理学报, 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [11] 谭中伟, 宁提纲, 刘 艳, 陈 勇, 曹继红, 董小伟, 马丽娜, 简水生. 基于啁啾光纤光栅的色散管理. 物理学报, 2006, 55(6): 2799-2803. doi: 10.7498/aps.55.2799
    [12] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [13] 谭中伟, 郑 凯, 刘 艳, 傅永军, 陈 勇, 曹继红, 宁提纲, 董小伟, 马丽娜, 简水生. 基于啁啾光纤光栅的色散补偿器在超长距离密集波分复用系统中的应用. 物理学报, 2005, 54(11): 5218-5223. doi: 10.7498/aps.54.5218
    [14] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿. 物理学报, 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [15] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [16] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计. 物理学报, 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [17] 裴 丽, 简水生, 延凤平, 宁提纲, 简 伟, 李唐军. 4×10Gb/s 400km 啁啾光纤光栅色散补偿研究. 物理学报, 2003, 52(3): 615-619. doi: 10.7498/aps.52.615
    [18] 刘永军, 柴路, 王清月, 张志刚. 对于具有一定宽度的光束通过展宽器的色散误差的评价. 物理学报, 2002, 51(6): 1291-1294. doi: 10.7498/aps.51.1291
    [19] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析. 物理学报, 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
    [20] 张志刚, 孙虹. 飞秒脉冲放大器中色散的计算和评价方法. 物理学报, 2001, 50(6): 1080-1086. doi: 10.7498/aps.50.1080
计量
  • 文章访问数:  8502
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-10-28
  • 刊出日期:  2020-01-20

/

返回文章
返回