搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaAs (001)图形衬底上InAs量子点的定位生长

王海玲 王霆 张建军

引用本文:
Citation:

GaAs (001)图形衬底上InAs量子点的定位生长

王海玲, 王霆, 张建军

Controllable growth of InAs quantum dots on patterned GaAs (001) substrate

Wang Hai-Ling, Wang Ting, Zhang Jian-Jun
PDF
HTML
导出引用
  • InAs/GaAs量子点是重要的单光子源, 位置可控量子点对实现可寻址易集成的高性能量子点光源具有重要意义. 本文详细研究了氢原子条件下GaAs (001)图形衬底的低温脱氧过程, 低温GaAs缓冲层生长中沟槽形貌的演化过程, 以及沟槽形貌对量子点形核位置的影响. 发现GaAs衬底上纳米沟槽侧壁的倾斜角较小时, InAs量子点会优先生长于沟槽底部; 当沟槽的侧壁倾斜角较大时, InAs量子点则会优先生长于沟槽两侧的外边沿位置. 此外, 本文还研究了纳米孔洞侧壁的倾斜角对量子点成核位置的影响, 实现了双量子点分子和四量子点分子的定位生长.
    InAs/GaAs quantum dot (QD) is one of the promising material systems for the quantum information processing due to their atomic-like optical and electrical properties. There are many previous researches reporting the InAs QDs which can be implemented as solid-state single-photon sources for quantum information and quantum computing. However, the site-controlled growth of QDs is the prerequisite for addressability and integration. There are very few researches focusing on the systematic study of preferential nucleation of InAs QDs on a patterned GaAs (001) substrate. In this work, we study the preferential nucleation sites of InAs QDs on a patterned GaAs (001) substrate with different trench sidewall inclinations. With small inclination angle of the trench sidewalls, the InAs QDs nucleate preferentially inside the trenches, while with large inclination angle, the edges of the trenches appear to be the preferential nucleation sites. By utilizing the established method, a pair of InAs dots can be uniformly achieved in the patterned pits through tuning the inclination angle of the pits. The site-controlled single InAs QD and InAs QD molecules on the patterned substrates could have potential applications in quantum information processing and quantum computing.
      通信作者: 张建军, jjzhang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301700, 2015CB932400)和国家自然科学基金(批准号: 11574356, 11434010)资助的课题.
      Corresponding author: Zhang Jian-Jun, jjzhang@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0301700, 2015CB932400) and the National Natural Science Foundation of China (Grant Nos. 11574356, 11434010).
    [1]

    Liu H Y, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photonics 5 416Google Scholar

    [2]

    Liu H Y, Xu B, Wei Y Q, Ding D, Qian J J, Han Q, Liang J B, Wang Z G 2001 Appl. Phys. Lett. 79 2868Google Scholar

    [3]

    Sanjay K 2005 J. Phys. D: Appl. Phys. 38 2142Google Scholar

    [4]

    Cerulo G, Liverini V, Fedoryshyn Y, Faist J 2017 Appl. Phys. Lett. 110 091106Google Scholar

    [5]

    Yamaguchi M, Nishimura K, Sasaki T, Suzuki H, Arafune K, Kojima N, Ohsita Y, Okada Y, Yamamoto A, Takamoto T, Araki K 2008 Sol. Energy 82 173Google Scholar

    [6]

    Tanabe K, Watanabe K, Arakawa Y 2012 Appl. Phys. Lett. 100 192102Google Scholar

    [7]

    Rakhlin M V, Belyaev K G, Klimko G V, Mukhin I S, Kirilenko D A, Shubina T V, Ivanov S V, Toropov A A 2018 Sci. Rep. 8 5299Google Scholar

    [8]

    Maier S, Berschneider K, Steinl T, Forchel A, Höfling S, Schneider C, Kamp M 2014 Semicond. Sci. Technol. 29 052001Google Scholar

    [9]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113Google Scholar

    [10]

    Fattal D, Diamanti E, Inoue K, Yamamoto Y 2004 Phys. Rev. Lett. 92 037904Google Scholar

    [11]

    Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 420 762Google Scholar

    [12]

    Tougaw P D, Lent C S 1994 J. Appl. Phys. 75 1818Google Scholar

    [13]

    Timler J, Lent C S 2002 J. Appl. Phys. 91 823Google Scholar

    [14]

    Ishikawa T, Kohmoto S, Asakawa K 1998 Appl. Phys. Lett. 73 1712Google Scholar

    [15]

    Atkinson P, Kiravittaya S, Benyoucef M, Rastelli A, Schmidt O G 2008 Appl. Phys. Lett. 93 101908Google Scholar

    [16]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [17]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [18]

    Kiravittaya S, Heidemeyer H, Schmidt O G 2004 Physica. E 23 253Google Scholar

    [19]

    Horikoshi Y, Kawashima M, Yamaguchi H 1988 Jpn. J. Appl. Phys. 27 169

    [20]

    Yamada T, Horikoshi Y 1994 Jpn. J. Appl. Phys. 33 1027

    [21]

    Heidemeyer H, Muller C, Schmidt O G 2004 J. Cryst. Growth 261 444Google Scholar

    [22]

    Costantini G, Rastelli A, Manzano C, Songmuang R, Schmidt O G, Kern K 2004 Appl. Phys. Lett. 85 5673Google Scholar

    [23]

    Hata M, Isu T, Watanabe A, Katayama Y 1990 J. Vac. Sci. Technol. B 8 692

    [24]

    Shen X Q, Nishinaga T 1993 Jpn. J. Appl. Phys. 32 L1117Google Scholar

  • 图 1  GaAs (001)衬底与沿$\left[ {1\bar 10} \right]$方向的纳米沟槽脱氧前后的形貌变化 (a)脱氧后平衬底区域的AFM图; (b), (c) α1 ≈ 16°时图形结构区域脱氧前后的AFM图; (d)沟槽脱氧前后AFM线扫描图

    Fig. 1.  Morphological change of patterned GaAs (001) substrate before and after deoxidation: (a) AFM image of flat GaAs after deoxidation; AFM image of patterned GaAs before (b) and after deoxidation (c), the trenches are orientated along $\left[ {1\bar 10} \right]$ direction and the sidewall inclination angle α1 is about 16°; (d) AFM line-scans of the trenches before (black line) and after deoxidation (red line).

    图 2  沿$\left[ {1\bar 10} \right]$方向倾斜角α1 ≈ 40°时的纳米沟槽在GaAs缓冲层生长前后的形貌变化 (a), (b)低温外延30 nm GaAs缓冲层前后的AFM图; (c)生长前后沟槽的AFM线扫描图, 图中黑色曲线对应α1 ≈ 40°, 红色曲线对应α1 ≈ 39°, α2 ≈ 19°

    Fig. 2.  Morphological change of the trenches (inclination angle α1 ≈ 40° and orientated along $\left[ {1\bar 10} \right]$ direction) after GaAs buffer growth: (a), (b) AFM images of the trenches before and after the deposition of 30 nm GaAs buffer at low temperature; (c) the black and red lines represent the cross-sectional AFM line-scans of (a) and (b). α1 ≈ 40° (black line); α1 ≈ 39°, α2 ≈ 19° (red line).

    图 3  沿$\left[ {1\bar 10} \right]$方向的纳米沟槽中InAs量子点优先成核位置分布图

    Fig. 3.  Site-controlled growth of InAs QDs on patterned GaAs with trenches along $\left[ {1\bar 10} \right]$ direction.

    图 4  InAs量子点在GaAs纳米沟槽中优先成核位置与纳米沟槽侧壁倾斜角α1的关系

    Fig. 4.  Dependence of preferential nucleation site of InAs QDs on trench inclination angle of the patterned GaAs.

    图 5  InAs QDs优先成核位置在相同倾斜角度不同方向的纳米沟槽中的各向异性 (a)和(b)分别为α1≈18°时沿 $\left[ {1\bar 10} \right]$和[110]方向纳米沟槽生长InAs量子点后的AFM图

    Fig. 5.  Orientational dependence of InAs QDs on trench-patterned GaAs along $\left[ {1\bar 10} \right]$ and [110]: (a) and (b) AFM images of InAs QDs grown on trench-patterned GaAs along $\left[ {1\bar 10} \right]$ and [110] with a trench inclination angle α1 ≈ 18°.

    图 6  调控纳米孔洞侧壁的倾斜角α1实现不同InAs量子点组合的定位生长 (a)生长在纳米孔洞底部的双量子点分子; (b)生长在纳米沟槽侧壁上的四量子点, 其中插图示意四量子点的位置; (c)纳米孔洞外沿形成量子点环; (d)图(a), (b)和(c)中纳米孔洞的AFM线扫描图, 倾斜角分别为10°, 17°, 28°

    Fig. 6.  Site-controlled growth of InAs QDs molecules on pit-patterned GaAs (001) substrate: (a) Double InAs QDs molecules at the pits bottom; (b) four InAs QDs molecules in the pits; (c) QDs rings around the pits; (d) cross-sectional AFM line-scan of these pits. The inclination angles are 10°, 17°, 28°, respectively.

  • [1]

    Liu H Y, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photonics 5 416Google Scholar

    [2]

    Liu H Y, Xu B, Wei Y Q, Ding D, Qian J J, Han Q, Liang J B, Wang Z G 2001 Appl. Phys. Lett. 79 2868Google Scholar

    [3]

    Sanjay K 2005 J. Phys. D: Appl. Phys. 38 2142Google Scholar

    [4]

    Cerulo G, Liverini V, Fedoryshyn Y, Faist J 2017 Appl. Phys. Lett. 110 091106Google Scholar

    [5]

    Yamaguchi M, Nishimura K, Sasaki T, Suzuki H, Arafune K, Kojima N, Ohsita Y, Okada Y, Yamamoto A, Takamoto T, Araki K 2008 Sol. Energy 82 173Google Scholar

    [6]

    Tanabe K, Watanabe K, Arakawa Y 2012 Appl. Phys. Lett. 100 192102Google Scholar

    [7]

    Rakhlin M V, Belyaev K G, Klimko G V, Mukhin I S, Kirilenko D A, Shubina T V, Ivanov S V, Toropov A A 2018 Sci. Rep. 8 5299Google Scholar

    [8]

    Maier S, Berschneider K, Steinl T, Forchel A, Höfling S, Schneider C, Kamp M 2014 Semicond. Sci. Technol. 29 052001Google Scholar

    [9]

    Weng Q C, An Z H, Zhu Z Q, Song J D, Choi W J 2014 Appl. Phys. Lett. 104 051113Google Scholar

    [10]

    Fattal D, Diamanti E, Inoue K, Yamamoto Y 2004 Phys. Rev. Lett. 92 037904Google Scholar

    [11]

    Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G S, Yamamoto Y 2002 Nature 420 762Google Scholar

    [12]

    Tougaw P D, Lent C S 1994 J. Appl. Phys. 75 1818Google Scholar

    [13]

    Timler J, Lent C S 2002 J. Appl. Phys. 91 823Google Scholar

    [14]

    Ishikawa T, Kohmoto S, Asakawa K 1998 Appl. Phys. Lett. 73 1712Google Scholar

    [15]

    Atkinson P, Kiravittaya S, Benyoucef M, Rastelli A, Schmidt O G 2008 Appl. Phys. Lett. 93 101908Google Scholar

    [16]

    Vastola G, Grydlik M, Brehm M, Fromherz T, Bauer G, Boioli F, Miglio L, Montalenti F 2011 Phys. Rev. B 84 155415Google Scholar

    [17]

    Hu H, Gao H J, Liu F 2008 Phys. Rev. Lett. 101 216102Google Scholar

    [18]

    Kiravittaya S, Heidemeyer H, Schmidt O G 2004 Physica. E 23 253Google Scholar

    [19]

    Horikoshi Y, Kawashima M, Yamaguchi H 1988 Jpn. J. Appl. Phys. 27 169

    [20]

    Yamada T, Horikoshi Y 1994 Jpn. J. Appl. Phys. 33 1027

    [21]

    Heidemeyer H, Muller C, Schmidt O G 2004 J. Cryst. Growth 261 444Google Scholar

    [22]

    Costantini G, Rastelli A, Manzano C, Songmuang R, Schmidt O G, Kern K 2004 Appl. Phys. Lett. 85 5673Google Scholar

    [23]

    Hata M, Isu T, Watanabe A, Katayama Y 1990 J. Vac. Sci. Technol. B 8 692

    [24]

    Shen X Q, Nishinaga T 1993 Jpn. J. Appl. Phys. 32 L1117Google Scholar

  • [1] 高飞, 冯琦, 王霆, 张建军. 硅(001)图形衬底上锗硅纳米线的定位生长. 物理学报, 2020, 69(2): 028102. doi: 10.7498/aps.69.20191407
    [2] 冯秋菊, 潘德柱, 邢研, 石笑驰, 杨毓琪, 李芳, 李彤彤, 郭慧颖, 梁红伟. 图形化蓝宝石衬底上有序微米半球形SnO2的生长、结构和光学特性研究. 物理学报, 2017, 66(3): 038101. doi: 10.7498/aps.66.038101
    [3] 张伟, 石震武, 霍大云, 郭小祥, 彭长四. 脉冲激光原位辐照对InAs/GaAs(001)量子点生长的影响. 物理学报, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [4] 李园, 窦秀明, 常秀英, 倪海桥, 牛智川, 孙宝权. 基于InAs单量子点的单光子干涉. 物理学报, 2011, 60(3): 037809. doi: 10.7498/aps.60.037809
    [5] 王秀平, 杨晓红, 韩勤, 鞠研玲, 杜云, 朱彬, 王杰, 倪海桥, 贺继方, 王国伟, 牛智川. 图形衬底量子线生长制备与荧光特性研究. 物理学报, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [6] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱. 物理学报, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [7] 蒋中伟, 王文新, 高汉超, 李辉, 何涛, 杨成良, 陈弘, 周均铭. GaSb/GaAs复合应力缓冲层上自组装InAs量子点的生长. 物理学报, 2009, 58(1): 471-476. doi: 10.7498/aps.58.471
    [8] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [9] 程桂平, 郑 俊, 邓文武, 李高翔. 反馈法定位两原子之间的相对位置. 物理学报, 2008, 57(1): 212-218. doi: 10.7498/aps.57.212
    [10] 宋禹忻, 俞重远, 刘玉敏. 沉积速率和生长停顿对InAs/GaAs量子点超晶格生长影响的综合分析. 物理学报, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [11] 王 茺, 刘昭麟, 李天信, 陈平平, 崔昊杨, 肖 军, 张 曙, 杨 宇, 陆 卫. 插入生长AlGaAs薄膜对InAs量子点探测器性能的影响. 物理学报, 2008, 57(2): 1155-1160. doi: 10.7498/aps.57.1155
    [12] 董庆瑞. 磁场方向调制的InAs量子点分子量子比特. 物理学报, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [13] 赵 谦, 潘教青, 张 靖, 周 帆, 王宝军, 王鲁峰, 边 静, 安 欣, 赵玲娟, 王 圩. 渐变掩蔽图形超低压选择区域生长法制备高质量InGaAsP多量子阱材料. 物理学报, 2006, 55(6): 2982-2985. doi: 10.7498/aps.55.2982
    [14] 杨国伟, 祝精美. 生长于微结构内点状结构的成核热力学. 物理学报, 1999, 48(8): 1514-1517. doi: 10.7498/aps.48.1514
    [15] 司俊杰, 杨沁清, 滕 达, 王红杰, 余金中, 王启明, 郭丽伟, 周均铭. (113)面硅衬底上自组织生长的GeSi量子点及其光荧光. 物理学报, 1999, 48(9): 1745-1750. doi: 10.7498/aps.48.1745
    [16] 姜卫红, 许怀哲, 龚 谦, 徐 波, 王吉政, 周 伟, 梁基本, 王占国. GaAs(311)A衬底上自组装InAs量子点的结构和光学特性. 物理学报, 1999, 48(8): 1541-1546. doi: 10.7498/aps.48.1541
    [17] 邵庆益, 方容川, 廖 源, 韩祀瑾. 衬底表面覆盖对薄膜成核和生长的影响. 物理学报, 1999, 48(8): 1509-1513. doi: 10.7498/aps.48.1509
    [18] 牛智川, 周增圻, 吴荣汉, 封松林, R.NOETZEL, U.JAHN, K.H.PLOOG. GaAs均匀点状结构的分子束外延图形生长. 物理学报, 1998, 47(8): 1346-1353. doi: 10.7498/aps.47.1346
    [19] 王志明, 封松林, 吕振东, 杨小平, 陈宗圭, 宋春英, 徐仲英, 郑厚植, 王凤莲, 韩培德, 段晓峰. 自组织InAs/GaAs量子点垂直排列生长研究. 物理学报, 1998, 47(1): 89-93. doi: 10.7498/aps.47.89
    [20] 吴锋民, 王衍, 吴自勤. 一维随机成核生长模型. 物理学报, 1996, 45(12): 1960-1969. doi: 10.7498/aps.45.1960
计量
  • 文章访问数:  6930
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-06
  • 修回日期:  2019-03-28
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回