搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射

张雪冰 刘乃漳 姚若河

引用本文:
Citation:

AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射

张雪冰, 刘乃漳, 姚若河

Polar optical phonon scattering of two-dimensional electron gas in AlGaN/GaN high electron mobility transistor

Zhang Xue-Bing, Liu Nai-Zhang, Yao Ruo-He
PDF
HTML
导出引用
  • AlGaN/GaN界面处的二维电子气迁移率是描述高电子迁移率晶体管特性的一个重要参数, 极化光学声子散射是高温时限制二维电子气迁移率的主要散射机制. 本文对极化光学声子散射进行计算, 结果表明在二维电子气浓度为6 × 1011—1 × 1013 cm–2, 温度为200—400 K范围内, 极化光学声子散射因素决定的迁移率随温度的变化近似为$ \mu_{\rm PO} = AT^{-\alpha} ~ (\alpha = 3.5) $; 由于GaN中光学声子能量较大, 吸收声子对迁移率的影响远大于发射声子的影响. 进一步讨论了极化光学声子散射因素决定的迁移率随光学声子能量变化的趋势, 表明增加极化光学声子能量可提高二维电子气的室温迁移率.
    With the increasing demand for high-frequency, high-power and high-temperature microwave applications, AlGaN/GaN high electron mobility transistors have received much attention due to their promising material features such as wide band gaps, high-concentration two-dimensional electron gas (2DEG), strong electric field, at which the electron velocity is saturated, and high operating temperature. The 2DEG mobility at AlGaN/GaN interface is a key parameter to describe characteristics of high electron mobility transistor, and the mobility of 2DEG in AlGaN/GaN high electron mobility transistor is determined by a variety of scattering mechanisms in which the polar optical phonon scattering caused by electrostatic field between uneven polar positive and negative charges is responsible for mobility limitation in a 2DEG at high temperature. Calculation of polar optical phonon scattering is carried out by the analytical model in which Fang-Howard variational wave function and Fermi’s golden rule are used. The interaction between 2DEG and phonon is described by scattering matrix element for the transition, in which phonon occupation number is given by Bose-Einstein statistics. The scattering time is derived by neglecting the in-scattering, and the numerically calculated energy-dependent scattering time is averaged according to Fermi statistics. At temperatures in a range of 200–400 K and two-dimensional electron gas concentration in a range of 6 × 1011–1 × 1013 cm–2, the mobility varying with temperature is analyzed. It is found that the mobility limited by polar phonon scattering decreases monotonically with the temperature rising and their dependence is well approximated by a function of $\mu_{\rm PO} = AT^{-\alpha} ~ (\alpha = 3.5)$ as the phonon occupation number increases with temperature rising. Furthermore, the polar optical phonon scattering is enhanced by greater electron concentration as a result of increased interaction between phonon and 2DEG. The mobility limit is calculated separately by emission phonon and absorption phonon, the results indicate that absorption phonon is predominant, which is attributed to high optical phonon energy in GaN. The mobility of polar optical phonon scattering is further studied by changing the optical phonon energy, which shows that the room temperature mobility of 2DEG can be improved by increasing the energy of polar optical phonon.
      通信作者: 姚若河, phrhyao@scut.edu.cn
    • 基金项目: 国家级-国家重点研究计划(2018YFB1802100)
      Corresponding author: Yao Ruo-He, phrhyao@scut.edu.cn
    [1]

    Yu E T, Dang X Z, Asbeck P M, Lau S S, Sullivan G J 1999 J. Vac. Sci. Technol., B 17 1742Google Scholar

    [2]

    Ji D, Liu B, Lu Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishra U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    刘贵鹏 2013 博士学位论文 (北京: 中国科学院大学)

    Liu G P 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [5]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520Google Scholar

    [6]

    Gokden S 2003 Phys. Status Solidi A 200 369Google Scholar

    [7]

    Anderson D R, Zakhleniuk N A, Babiker M, Ridley B K, Bennett C R 2001 Phys. Rev. B 63 245313Google Scholar

    [8]

    Ridley B K 1998 J. Phys. Condens. Matter 10 6717Google Scholar

    [9]

    张金凤, 郝跃, 张进城, 倪金玉 2008 中国科学E辑: 信息科学 38 949

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. China Ser. E: Inf. Sci. 38 949

    [10]

    杨福军, 班士良 2012 物理学报 61 087201Google Scholar

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201Google Scholar

    [11]

    Protasov D Y, Malin T V, Tikhonov A V, Tsatsulnikov A F, Zhuravlev K S 2013 Semiconductors 47 33Google Scholar

    [12]

    陈志凯 2016 博士学位论文 (成都: 电子科技大学)

    Chen Z K 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [13]

    杨鹏, 吕燕伍, 王鑫波 2015 物理学报 64 197303Google Scholar

    Yang P, Lü Y W, Wang X B 2015 Acta Phys. Sin. 64 197303Google Scholar

    [14]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 045316Google Scholar

    [15]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic Press) pp4–28

    [16]

    Yokoyama K, Hess K 1986 Phys. Rev. B 33 5595Google Scholar

    [17]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [18]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaars S P 1997 Solid State Commun. 102 297Google Scholar

    [19]

    Chin V W L, Tansley T L, Osotchan T 1994 J. Appl. Phys. 75 7365Google Scholar

    [20]

    Cui P, Mo J H, Fu C, Lü Y J, Liu H, Cheng A J, Luan C B, Zhou Y, Dai G, Lin Z J 2018 Sci. Rep. 8 9036

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [22]

    Zhang Y F, Smorchkova I P, Elsass C R, Keller S, Ibbetson J P, Denbaars S, Mishra U K, Singh J 2000 J. Appl. Phys. 87 7981Google Scholar

    [23]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Yang H 2003 Appl. Phys. Lett. 83 677Google Scholar

  • 图 1  AlGaN/GaN HEMT器件结构图

    Fig. 1.  Device structure diagram of AlGaN/GaN HEMT.

    图 2  纵光学波引起的极化示意图

    Fig. 2.  A schematic diagram of polarization caused by a longitudinal optical wave.

    图 3  极化光学声子散射因素决定的迁移率随温度的变化

    Fig. 3.  Mobility limited by polar optical phonon scattering as a function of temperature.

    图 4  不同2DEG浓度n2D下, 极化光学声子散射随温度的变化

    Fig. 4.  Polar optical phonon scattering dependence on temperature for different n2D.

    图 5  极化光学声子散射随光学声子能量ћωLO的变化

    Fig. 5.  Curve of polar optical phonon scattering versus optical phonon energy ћωLO.

    表 1  相关的GaN参数值

    Table 1.  Parameters of GaN used for the calculations.

    参数符号/单位取值
    介电常数(低频)ε/F·m–110.4ε0[18]
    介电常数(高频)ε/F·m–15.47ε0[18]
    电子有效质量m*/kg0.22m0[19]
    声子能量ћωLO/meV91.2[19]
    下载: 导出CSV
  • [1]

    Yu E T, Dang X Z, Asbeck P M, Lau S S, Sullivan G J 1999 J. Vac. Sci. Technol., B 17 1742Google Scholar

    [2]

    Ji D, Liu B, Lu Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201Google Scholar

    [3]

    Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S, Mishra U K 2000 Appl. Phys. Lett. 77 250Google Scholar

    [4]

    刘贵鹏 2013 博士学位论文 (北京: 中国科学院大学)

    Liu G P 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [5]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520Google Scholar

    [6]

    Gokden S 2003 Phys. Status Solidi A 200 369Google Scholar

    [7]

    Anderson D R, Zakhleniuk N A, Babiker M, Ridley B K, Bennett C R 2001 Phys. Rev. B 63 245313Google Scholar

    [8]

    Ridley B K 1998 J. Phys. Condens. Matter 10 6717Google Scholar

    [9]

    张金凤, 郝跃, 张进城, 倪金玉 2008 中国科学E辑: 信息科学 38 949

    Zhang J F, Hao Y, Zhang J C, Ni J Y 2008 Sci. China Ser. E: Inf. Sci. 38 949

    [10]

    杨福军, 班士良 2012 物理学报 61 087201Google Scholar

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201Google Scholar

    [11]

    Protasov D Y, Malin T V, Tikhonov A V, Tsatsulnikov A F, Zhuravlev K S 2013 Semiconductors 47 33Google Scholar

    [12]

    陈志凯 2016 博士学位论文 (成都: 电子科技大学)

    Chen Z K 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [13]

    杨鹏, 吕燕伍, 王鑫波 2015 物理学报 64 197303Google Scholar

    Yang P, Lü Y W, Wang X B 2015 Acta Phys. Sin. 64 197303Google Scholar

    [14]

    Gurusinghe M N, Davidsson S K, Andersson T G 2005 Phys. Rev. B 72 045316Google Scholar

    [15]

    Rode D L 1975 Semiconductors and Semimetals (New York: Academic Press) pp4–28

    [16]

    Yokoyama K, Hess K 1986 Phys. Rev. B 33 5595Google Scholar

    [17]

    Price P J 1981 Ann. Phys. 133 217Google Scholar

    [18]

    Look D C, Sizelove J R, Keller S, Wu Y F, Mishra U K, DenBaars S P 1997 Solid State Commun. 102 297Google Scholar

    [19]

    Chin V W L, Tansley T L, Osotchan T 1994 J. Appl. Phys. 75 7365Google Scholar

    [20]

    Cui P, Mo J H, Fu C, Lü Y J, Liu H, Cheng A J, Luan C B, Zhou Y, Dai G, Lin Z J 2018 Sci. Rep. 8 9036

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222Google Scholar

    [22]

    Zhang Y F, Smorchkova I P, Elsass C R, Keller S, Ibbetson J P, Denbaars S, Mishra U K, Singh J 2000 J. Appl. Phys. 87 7981Google Scholar

    [23]

    Zhao D G, Xu S J, Xie M H, Tong S Y, Yang H 2003 Appl. Phys. Lett. 83 677Google Scholar

  • [1] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [2] 马嵩松, 舒天宇, 朱家旗, 李锴, 吴惠桢. Ⅳ-Ⅵ族化合物半导体异质结二维电子气研究进展. 物理学报, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [3] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析. 物理学报, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [4] 王现彬, 赵正平, 冯志红. N极性GaN/AlGaN异质结二维电子气模拟. 物理学报, 2014, 63(8): 080202. doi: 10.7498/aps.63.080202
    [5] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [6] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, 2013, 62(15): 150202. doi: 10.7498/aps.62.150202
    [7] 王威, 周文政, 韦尚江, 李小娟, 常志刚, 林铁, 商丽燕, 韩奎, 段俊熙, 唐宁, 沈波, 褚君浩. GaN/AlxGa1-xN异质结二维电子气的磁电阻研究. 物理学报, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [8] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究. 物理学报, 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [9] 冀子武, 郑雨军, 徐现刚. 超强磁场下非掺杂ZnSe/BeTe Ⅱ型量子阱中激子和带电激子的光学特性. 物理学报, 2011, 60(4): 047805. doi: 10.7498/aps.60.047805
    [10] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [11] 周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕 力, 刘 建, 刘新宇, 贾海强, 陈 弘, 周均铭. AlGaN/AlN/GaN结构中二维电子气的输运特性. 物理学报, 2007, 56(10): 6013-6018. doi: 10.7498/aps.56.6013
    [12] 周文政, 林 铁, 商丽燕, 黄志明, 朱 博, 崔利杰, 高宏玲, 李东临, 郭少令, 桂永胜, 褚君浩. 双δ掺杂In0.65Ga0.35As/In0.52Al0.48As赝型高迁移率晶体管材料子带电子特性研究. 物理学报, 2007, 56(7): 4143-4147. doi: 10.7498/aps.56.4143
    [13] 高宏玲, 李东临, 周文政, 商丽燕, 王宝强, 朱战平, 曾一平. 不同量子阱宽度的InP基In0.53GaAs/In0.52AlAs高电子迁移率晶体管材料二维电子气的性能研究. 物理学报, 2007, 56(8): 4955-4959. doi: 10.7498/aps.56.4955
    [14] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, 2007, 56(7): 4099-4104. doi: 10.7498/aps.56.4099
    [15] 周文政, 姚 炜, 朱 博, 仇志军, 郭少令, 林 铁, 崔利杰, 桂永胜, 褚君浩. 单边掺杂InAlAs/InGaAs单量子阱中二维电子气的磁输运特性. 物理学报, 2006, 55(4): 2044-2048. doi: 10.7498/aps.55.2044
    [16] 舒 强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮 彪, 邢晓东, 林耀望, 许京军, 王占国. 调制掺杂GaAs/AlGaAs 2DEG材料持久光电导及子带电子特性研究. 物理学报, 2006, 55(3): 1379-1383. doi: 10.7498/aps.55.1379
    [17] 郑泽伟, 沈 波, 桂永胜, 仇志军, 唐 宁, 蒋春萍, 张 荣, 施 毅, 郑有炓, 郭少令, 褚君浩. AlxGa1-x N/GaN调制掺杂异质结构的子带性质研究. 物理学报, 2004, 53(2): 596-600. doi: 10.7498/aps.53.596
    [18] 孔月婵, 郑有炓, 周春红, 邓永桢, 顾书林, 沈 波, 张 荣, 韩 平, 江若琏, 施 毅. AlGaN/GaN异质结构中极化与势垒层掺杂对二维电子气的影响. 物理学报, 2004, 53(7): 2320-2324. doi: 10.7498/aps.53.2320
    [19] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究. 物理学报, 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  7774
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 修回日期:  2020-05-05
  • 上网日期:  2020-05-13
  • 刊出日期:  2020-08-05

/

返回文章
返回