搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横电波激励下亚波长一维金属光栅的异常透射性

王亚伟 刘明礼 刘仁杰 雷海娜 邓晓斌

引用本文:
Citation:

横电波激励下亚波长一维金属光栅的异常透射性

王亚伟, 刘明礼, 刘仁杰, 雷海娜, 邓晓斌

Extraordinary transmission through one-dimensional metallic gratings with sub-wavelength slits under transverse electric wave excitation

Wang Ya-Wei, Liu Ming-Li, Liu Ren-Jie, Lei Hai-Na, Deng Xiao-Bin
PDF
导出引用
  • 针对一维亚波长金属光栅异常透射现象实现的问题,利用时域有限差分法,对横电波(TE波)激励带电介质的亚波长一维金属光栅的光场分布进行了模拟分析,得到了TE波的透射率与电介质折射率的变化关系,从而发现TE波在所研究的模型下具有异常透射现象.基于导模共振理论建立了类导模共振理论,并应用该理论较好地解释了TE波在所研究模型下的异常透射现象,确定类导模共振是TE波产生异常透射性的主要原因.应用所建立的理论解决了传统透射理论无法解决的问题.类导模共振理论揭示了异常透射现象的物理本质,为进一步研究异常透射性的物理本质提
    To show how to achieve the extraordinary transmission of one-dimensional metallic gratings with sub-wavelenghth slits, the transmission distribution of transverse electric (TE) wave through one-dimensional metallic gratings with sub-wavelenghth slits with a dielectric substance applied on it in different ways has been simulated by the finite-difference time-domain method. The relations between the refractive index of dielectric and the transmission efficiency is elicited from simulation, which show that the extraordinary transmission can be produced at several special wavelengths. Then, a new theory named the guided-mode-like resonance theory is put forward based on the guided-mode resonance theory, which is well suited for the extraordinary transmission under the TE-polarized wave excitation, and it is concluded that the guided-mode-like resonance is the main reason for the extraordinary transmission of TE-polarized wave. Thus, the new theory can explain the problems which cant be explained by the traditional theory. In a word, the guided-mode like resonance theory reveals the physical nature of the extraordinary transmission phenomenon which provides a theoretical basis for the further study of the extraordinary transmission phenomenon.
    • 基金项目: 江苏省高校自然科学研究计划重大项目(批准号:09KJA14001)和江苏省自然科学基金(批准号:BK2008230)资助的课题.
    [1]

    [1]Ebbesen T W, Lezec H J, GhaemiH F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    [2]Genet C, Ebbesen T W 2007 Nature 445 39

    [3]

    [3]Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese)[孟阔、王艳花、陈龙旺、张岩 2008 物理学报 57 3198]

    [4]

    [4]Rindzevicius T, Alaverdyan Y, Sepulveda B, Pakizeh T, Kll M, Hillenbrand R 2007 J. Phys. Chem. C 111 1207

    [5]

    [5]Rodrigo S G, García-Vidal F J, Martín-Moreno L 2008 Phys. Rev. B 77 075401

    [6]

    [6]Bravo-Abad J, Degiron A, Przybilla F, Genet C, García-Vidal F J, Martín-Moreno L, Ebbesen T W 2006 Nat. Phys. 2 120

    [7]

    [7]Xie Y, Zakharian A R, Moloney J V, Mansuripur M 2006 Opt. Express 14 6400

    [8]

    [8]Crouse D, Keshavareddy P 2007 Opt. Express 15 1415

    [9]

    [9]Wu F Q, Han D Z, Li X, Liu X H 2008 Opt. Express 16 6619

    [10]

    ]Belotelov V I, Doskolovich L L, Kotov V A, Bezus E A, Bykov D A, Zvezdin A K 2007 Opt. Coummun. 278 104

    [11]

    ]Wurtz G A, Dickson W, Connor D O, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

    [12]

    ]García-Vidal F J, Martín-Moreno L 2002 Phys. Rev. B 66 155412

    [13]

    ]Pendry J B, Martín-Moreno L, García-Vidal F J 2004 Science 305 847

    [14]

    ]Moreno E, Martín-Moreno L, García-Vidal F J 2006 J.Opt. A 8 S94

    [15]

    ]Yuan G H, Wang P, Zhang D G 2006 Proc. IEEE 7803 9774

    [16]

    ]Yuan G H, Wang P, Zhang D G 2007 Chin. Phys. Lett. 24 1600

    [17]

    ]Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd ed)(Boston: Artech House) p236

    [18]

    ]Aleksandar D R, Aleksandra B D, Jovan M E, Marian L M 1998 Appl. Opt. 37 5271

    [19]

    ]Young J L, Nelson R O 2001 IEEE Antennas Propag. Mag. 43 61

    [20]

    ]Han M H, Dutton R W 2006 IEEE Microw. Wireless Compon.Lett. 16 3

    [21]

    ]Ma J Y,Liu S J,Wei C Y,Xu C,Jin Y X,Zhao Y A,Shao J D,Fan Z X 2008 Acta Phys. Sin. 57 827 (in Chinese)[麻健勇、刘世杰、魏朝阳、许程、晋云霞、赵元安、邵建达、范正修 2008 物理学报 57 827]

    [22]

    ]Xie Y, Zakharian A R, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485

  • [1]

    [1]Ebbesen T W, Lezec H J, GhaemiH F, Thio T, Wolff P A 1998 Nature 391 667

    [2]

    [2]Genet C, Ebbesen T W 2007 Nature 445 39

    [3]

    [3]Meng K, Wang Y H, Chen L W, Zhang Y 2008 Acta Phys. Sin. 57 3198 (in Chinese)[孟阔、王艳花、陈龙旺、张岩 2008 物理学报 57 3198]

    [4]

    [4]Rindzevicius T, Alaverdyan Y, Sepulveda B, Pakizeh T, Kll M, Hillenbrand R 2007 J. Phys. Chem. C 111 1207

    [5]

    [5]Rodrigo S G, García-Vidal F J, Martín-Moreno L 2008 Phys. Rev. B 77 075401

    [6]

    [6]Bravo-Abad J, Degiron A, Przybilla F, Genet C, García-Vidal F J, Martín-Moreno L, Ebbesen T W 2006 Nat. Phys. 2 120

    [7]

    [7]Xie Y, Zakharian A R, Moloney J V, Mansuripur M 2006 Opt. Express 14 6400

    [8]

    [8]Crouse D, Keshavareddy P 2007 Opt. Express 15 1415

    [9]

    [9]Wu F Q, Han D Z, Li X, Liu X H 2008 Opt. Express 16 6619

    [10]

    ]Belotelov V I, Doskolovich L L, Kotov V A, Bezus E A, Bykov D A, Zvezdin A K 2007 Opt. Coummun. 278 104

    [11]

    ]Wurtz G A, Dickson W, Connor D O, Atkinson R, Hendren W, Evans P, Pollard R, Zayats A V 2008 Opt. Express 16 7460

    [12]

    ]García-Vidal F J, Martín-Moreno L 2002 Phys. Rev. B 66 155412

    [13]

    ]Pendry J B, Martín-Moreno L, García-Vidal F J 2004 Science 305 847

    [14]

    ]Moreno E, Martín-Moreno L, García-Vidal F J 2006 J.Opt. A 8 S94

    [15]

    ]Yuan G H, Wang P, Zhang D G 2006 Proc. IEEE 7803 9774

    [16]

    ]Yuan G H, Wang P, Zhang D G 2007 Chin. Phys. Lett. 24 1600

    [17]

    ]Taflove A, Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd ed)(Boston: Artech House) p236

    [18]

    ]Aleksandar D R, Aleksandra B D, Jovan M E, Marian L M 1998 Appl. Opt. 37 5271

    [19]

    ]Young J L, Nelson R O 2001 IEEE Antennas Propag. Mag. 43 61

    [20]

    ]Han M H, Dutton R W 2006 IEEE Microw. Wireless Compon.Lett. 16 3

    [21]

    ]Ma J Y,Liu S J,Wei C Y,Xu C,Jin Y X,Zhao Y A,Shao J D,Fan Z X 2008 Acta Phys. Sin. 57 827 (in Chinese)[麻健勇、刘世杰、魏朝阳、许程、晋云霞、赵元安、邵建达、范正修 2008 物理学报 57 827]

    [22]

    ]Xie Y, Zakharian A R, Moloney J V, Mansuripur M 2005 Opt. Express 13 4485

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖DBR结构的透射增强效应研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240357
    [2] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, 2021, 70(1): 014201. doi: 10.7498/aps.70.20201017
    [3] 董大兴, 刘友文, 伏洋洋, 费越. 金属光栅异常透射增强黑磷烯法拉第旋转的理论研究. 物理学报, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [4] 江孝伟, 武华, 袁寿财. 基于金属光栅实现石墨烯三通道光吸收增强. 物理学报, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [5] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [6] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [7] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [8] 陆云清, 成心怡, 许敏, 许吉, 王瑾. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射. 物理学报, 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [9] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [10] 褚金奎, 王倩怡, 王志文, 王立鼎. 双层金属纳米光栅的TE偏振光异常透射特性. 物理学报, 2015, 64(16): 164206. doi: 10.7498/aps.64.164206
    [11] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [12] 尚万里, 杨家敏, 赵阳, 朱托, 熊刚. 透射光栅衍射效率的通用模型. 物理学报, 2011, 60(9): 094212. doi: 10.7498/aps.60.094212
    [13] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [14] 白文理, 郭宝山, 蔡利康, 甘巧强, 宋国峰. 亚波长金属光栅的光耦合增强效应及透射局域化的模拟研究. 物理学报, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [15] 王媛媛, 张彩虹, 马金龙, 金飙兵, 许伟伟, 康琳, 陈健, 吴培亨. 亚波长孔阵列的太赫兹波异常透射研究. 物理学报, 2009, 58(10): 6884-6888. doi: 10.7498/aps.58.6884
    [16] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱. 物理学报, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [17] 朱伟忠, 吴衍青, 郭 智, 朱效立, 马 杰, 谢常青, 史沛熊, 周洪军, 霍同林, 邰仁忠, 徐洪杰. 大面积10000线/毫米软X射线金属型透射光栅的设计、制作与检测. 物理学报, 2008, 57(10): 6386-6392. doi: 10.7498/aps.57.6386
    [18] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [19] 周传宏, 王磊, 聂娅, 王植恒. 介质光栅导模共振耦合波分析. 物理学报, 2002, 51(1): 68-73. doi: 10.7498/aps.51.68
    [20] 谈春雷, 易永祥, 汪国平. 一维金属光栅的透射光学特性. 物理学报, 2002, 51(5): 1063-1067. doi: 10.7498/aps.51.1063
计量
  • 文章访问数:  6946
  • PDF下载量:  933
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-15
  • 修回日期:  2009-10-31
  • 刊出日期:  2010-03-05

/

返回文章
返回