搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In在Al(001)表面偏析的模拟

刘建才 张新明 陈明安 唐建国 刘胜胆

引用本文:
Citation:

In在Al(001)表面偏析的模拟

刘建才, 张新明, 陈明安, 唐建国, 刘胜胆

Simulation of surface segregation of in to Al(001) surface

Liu Jian-Cai, Zhang Xin-Ming, Chen Ming-An, Tang Jian-Guo, Liu Sheng-Dan
PDF
导出引用
  • 通过一种空位模型详细的描述了In在Al(001)表面的扩散偏析过程,利用周期性密度泛函理论方法计算了这个偏析过程中每步构型的能量和In原子扩散的能量壁垒,并对可能的偏析机理进行分析.结果表明:In原子从Al(001)表面第二层扩散偏析至表面层时,系统的能量降低了0.64 eV,最大的扩散迁移壁垒为0.34 eV;而从表面更内层向表面第二层扩散时系统能量基本保持不变,扩散需要克服的能量壁垒为0.65 eV,说明In原子在Al(001)表面只能由体内向表面扩散偏析.In在Al(001)的清洁表面具有强烈的偏析趋势,在热力学上是容易进行的.
    A new vacancy model by using periodic density functional theory was used to describe the process of In segregation from clean Al surfaces via atomic movement through vacancies. The detailed segregation mechanism of impurity metal In to Al (001) surface planes is examined, carefully evaluating energy barriers for each step in the segregation process. The results show that the system energy is decreased by 0.46 eV and the highest energy barrier is 0.34 eV when the impurity atom In moves from the second layer to the topmost layer in the Al (001) slab. The system energy is almost constant when impurity atoms segregate from the third layer to the second layer. Higher energy (0.65 eV) was needed to overcome the energy barriers. So, In showing a strong segregation to the clean Al (001) surface is thermodynamically favorable.
    • 基金项目: 国家重点基础研究发展计划(批准号:2005CB623706)资助的课题.
    [1]

    Zhang X M, Meng Y, Zhou Z P, Zhou H Z 1999 Chin. J. Nonferrous Met. 9 19 (in Chinese) [张新明、孟 亚、周卓平、周鸿章 1999 中国有色金属学报 9 19]

    [2]

    Caicedo-Martinez C E, Koroleva E, Skeldon P, Thompson G E, Hoellrigl G, Bailey P, Noakes T C Q, Habazaki H, Shimizu K 2002 J. Electrochem. Soc. 149 B139

    [3]

    Arai K, Suzuki T, Atsumi T 1985 J. Electrochem. Soc 132 1667

    [4]

    Song J B, Mao W M, Yang H, Feng H P 2008 Trans. Nonferrous Met. Soc. China 18 879

    [5]

    Chen H C, Ou B L 2004 J. Mater. Sci.-Mater. Electron 15 819

    [6]

    Lin W, Tu G C, Lin C F, Peng Y M 1997 Corros. Sci. 39 1531

    [7]

    Andreev Y Y, Goncharov A V 2005 Electrochim. Acta. 50 2629

    [8]

    Graver B, van Helvoort A, Walmsley J C, Nisancioglu K. Aluminium Alloys 2006, Pts 1 and 2, Zurich-Uetikon:Trans Tech Publications Ltd, 2006: 519—521, 673

    [9]

    Kim C, Chung Y C 2006 Appl. Surf. Sci. 252 8380

    [10]

    Ndongmouo U T, Hontinfinde F 2004 Surf. Sci. 571 89

    [11]

    Kravchuk T, Hoffman A 2007 Surf. Sci. 601 87

    [12]

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352 (in Chinese) [赵 巍、汪家道、刘峰斌、陈大融 2009 物理学报 58 3352]

    [13]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵、吴青云、张健敏、陈志高、黄志高 2009 物理学报 58 1924]

    [14]

    Lin F, Zheng F W, Ouyang F P Acta Phys. Sin. 58 S193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 S193]

    [15]

    Yao R, Wang F H, Zhou Y S Acta Phys. Sin. 58 S177 (in Chinese) [姚 蕊、王福合、周云松 2009 物理学报 58 S177]

    [16]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [17]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comput. Mater. Sci. 28 250

    [18]

    Porter D A, Easterling K E 2000 Phase transformations in metalsand alloys[M]. Cheltenham: Stanley Thornes

    [19]

    Fradin F Y, Rowland T J 1967 Appl. Phys. Lett. 11 207

    [20]

    Mantina M, Wang Y, Arroyave R, Chen L Q, Liu Z K, Wolverton C 2008 Phys. Rev. Lett. 100 215901

  • [1]

    Zhang X M, Meng Y, Zhou Z P, Zhou H Z 1999 Chin. J. Nonferrous Met. 9 19 (in Chinese) [张新明、孟 亚、周卓平、周鸿章 1999 中国有色金属学报 9 19]

    [2]

    Caicedo-Martinez C E, Koroleva E, Skeldon P, Thompson G E, Hoellrigl G, Bailey P, Noakes T C Q, Habazaki H, Shimizu K 2002 J. Electrochem. Soc. 149 B139

    [3]

    Arai K, Suzuki T, Atsumi T 1985 J. Electrochem. Soc 132 1667

    [4]

    Song J B, Mao W M, Yang H, Feng H P 2008 Trans. Nonferrous Met. Soc. China 18 879

    [5]

    Chen H C, Ou B L 2004 J. Mater. Sci.-Mater. Electron 15 819

    [6]

    Lin W, Tu G C, Lin C F, Peng Y M 1997 Corros. Sci. 39 1531

    [7]

    Andreev Y Y, Goncharov A V 2005 Electrochim. Acta. 50 2629

    [8]

    Graver B, van Helvoort A, Walmsley J C, Nisancioglu K. Aluminium Alloys 2006, Pts 1 and 2, Zurich-Uetikon:Trans Tech Publications Ltd, 2006: 519—521, 673

    [9]

    Kim C, Chung Y C 2006 Appl. Surf. Sci. 252 8380

    [10]

    Ndongmouo U T, Hontinfinde F 2004 Surf. Sci. 571 89

    [11]

    Kravchuk T, Hoffman A 2007 Surf. Sci. 601 87

    [12]

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352 (in Chinese) [赵 巍、汪家道、刘峰斌、陈大融 2009 物理学报 58 3352]

    [13]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵、吴青云、张健敏、陈志高、黄志高 2009 物理学报 58 1924]

    [14]

    Lin F, Zheng F W, Ouyang F P Acta Phys. Sin. 58 S193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 S193]

    [15]

    Yao R, Wang F H, Zhou Y S Acta Phys. Sin. 58 S177 (in Chinese) [姚 蕊、王福合、周云松 2009 物理学报 58 S177]

    [16]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [17]

    Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J 2003 Comput. Mater. Sci. 28 250

    [18]

    Porter D A, Easterling K E 2000 Phase transformations in metalsand alloys[M]. Cheltenham: Stanley Thornes

    [19]

    Fradin F Y, Rowland T J 1967 Appl. Phys. Lett. 11 207

    [20]

    Mantina M, Wang Y, Arroyave R, Chen L Q, Liu Z K, Wolverton C 2008 Phys. Rev. Lett. 100 215901

计量
  • 文章访问数:  8024
  • PDF下载量:  946
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-12
  • 修回日期:  2010-12-07
  • 刊出日期:  2010-04-05

/

返回文章
返回