搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响

潘金平 胡晓君 陆利平 印迟

引用本文:
Citation:

退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响

潘金平, 胡晓君, 陆利平, 印迟

Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films

Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi
PDF
导出引用
  • 采用热丝化学气相沉积法制备B掺杂纳米金刚石薄膜,并对薄膜进行真空退火处理,系统研究了不同退火温度对B掺杂纳米金刚石薄膜的微结构和电化学性能的影响.结果表明,当退火温度升高到800 ℃后,薄膜的Raman谱图中由未退火时在1157,1346,1470,1555 cm-1处的4个峰转变为只有D峰和G峰,说明晶界上的氢大量解吸附量减少,并且D峰和G峰的积分强度比ID/IG值变为最小,即sp2相团簇
    The annealing under different temperatures was performed on boron-doped nanocrystalline diamond films synthesized by hot filament chemical vapor deposition (HFCVD). The effects of annealing on the microstructure and electrochemical properties of films were systematically investigated. The results show that there are four peaks at 1157,1346,1470 and 1555 cm-1 in Raman spectra of the unannealed sample. When the films were annealed at temperatures above 800 ℃, there are only two peaks of D and G band, indicating that the hydrogen in grain boundaries significantly decreased. The area-integrated intensity ratio of D band to G band (ID/IG) reaches minimum value, revealing that the cluster number or cluster size of sp2 phase was reduced. The G peak position shifts to lower wave number, indicating an decrease in the ordering of graphitic component. The electrode exhibits the widest potential window and the highest oxygen evolution potential, and the quasi-reversible reaction occurs on the surface of the samples. The D peak is quite sharp and its intensity increases when the sample was annealed at 1000 ℃. The ID/IG value attains to the maximum value and the G peak position clearly shifts to higher value. The electrode exhibits the narrowest potential window and the lowest oxygen evolution potential, and the reversible electrochemical reaction occurs in the surface of the sample. The above results reveal that the cluster number or cluster size of sp2 phase, the amounts of trans-polyacetylene related to hydrogen in the grain boundaries, the disordering of graphitic components and the boron diffusion in the nanocrystalline diamond films give contributions to the complex change in electrochemical properties of the films with the annealing temperature increasing.
    • 基金项目: 国家自然科学基金(批准号:50602039, 50972129)和浙江省"钱江人才"计划(批准号:2010R10026)资助的课题.
    [1]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 Electroanal. Chem. 473 179

    [2]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 Electrochem. Soc. 146 1469

    [3]

    Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146

    [4]

    Swain G M 1994 Electrochem. Soc. 141 3382

    [5]

    Declements R, Swain G M 1997 Electrochem. Soc. 144 856

    [6]

    Fischer A E, Swain G M 2005 Electrochem. Soc. 152 B369

    [7]

    Wei J J, He Q, Gao X H, Guo H B, Shi S Y, Lü F X, Tang W Z, Chen G C 2007 J. Syn. Crystals 36 569 (in Chinese) [魏俊 俊、贺 琦、高旭辉、郭会斌、石绍渊、吕反修、唐伟忠、陈广超 2007 人工晶体学报 36 569] 〖8] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江、石成儒、吴惠桢 2002 物理学报 51 1870]

    [8]

    Gruen D M 1999 Ann. Rev. Mater. Sci. 29 211

    [9]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [10]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [11]

    Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业、刘 畅 2003 物理学报 52 1479]

    [12]

    Sun Z, Shi J R, Tay B K 2000 Diam. Rel. Mater. 9 1979

    [13]

    Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86

    [14]

    Zhou Y L, Zhi J F, Zou Y S 2008 Anal. Chem. 80 4141

    [15]

    Ayten A Y, Swope V M, Swain G M 2008 Electrochemical Society 155 B1013

    [16]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [17]

    Ferrari A C, Robertson J 2001 Nanostruct. Carbon 1 77

    [18]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [19]

    Hao L, Sheldon B W, Kothari A 2006 Appl. Phys. Lett. 100 094309

    [20]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [21]

    Neto M A, Fernandes A J S, Silva R F 2007 Vacuum 81 1416

    [22]

    Arenal R, Montagnac G, Bruno P 2007 Phys. Rev. B 76 245316

    [23]

    Shi J R, Shi X, Sun Z 2000 Thin Solid Films 366 169

    [24]

    Rodil S E, Muhl S, Maca S 2003 Thin Solid Films 433 119

    [25]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

    [26]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [27]

    Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Engng. Chin. Univ. 20 932 (in Chinese) [胡晓君、曹华珍、郑国渠、曹 帅 2006 高校化学工程学报 20 932]

  • [1]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 Electroanal. Chem. 473 179

    [2]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 Electrochem. Soc. 146 1469

    [3]

    Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146

    [4]

    Swain G M 1994 Electrochem. Soc. 141 3382

    [5]

    Declements R, Swain G M 1997 Electrochem. Soc. 144 856

    [6]

    Fischer A E, Swain G M 2005 Electrochem. Soc. 152 B369

    [7]

    Wei J J, He Q, Gao X H, Guo H B, Shi S Y, Lü F X, Tang W Z, Chen G C 2007 J. Syn. Crystals 36 569 (in Chinese) [魏俊 俊、贺 琦、高旭辉、郭会斌、石绍渊、吕反修、唐伟忠、陈广超 2007 人工晶体学报 36 569] 〖8] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江、石成儒、吴惠桢 2002 物理学报 51 1870]

    [8]

    Gruen D M 1999 Ann. Rev. Mater. Sci. 29 211

    [9]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [10]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [11]

    Liu C Y, Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业、刘 畅 2003 物理学报 52 1479]

    [12]

    Sun Z, Shi J R, Tay B K 2000 Diam. Rel. Mater. 9 1979

    [13]

    Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86

    [14]

    Zhou Y L, Zhi J F, Zou Y S 2008 Anal. Chem. 80 4141

    [15]

    Ayten A Y, Swope V M, Swain G M 2008 Electrochemical Society 155 B1013

    [16]

    Wang S H, Swope V M, Butler J E 2009 Diam. Rel. Mater. 18 669

    [17]

    Ferrari A C, Robertson J 2001 Nanostruct. Carbon 1 77

    [18]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [19]

    Hao L, Sheldon B W, Kothari A 2006 Appl. Phys. Lett. 100 094309

    [20]

    Teii K, Ikeda T 2007 Diam. Rel. Mater. 16 753

    [21]

    Neto M A, Fernandes A J S, Silva R F 2007 Vacuum 81 1416

    [22]

    Arenal R, Montagnac G, Bruno P 2007 Phys. Rev. B 76 245316

    [23]

    Shi J R, Shi X, Sun Z 2000 Thin Solid Films 366 169

    [24]

    Rodil S E, Muhl S, Maca S 2003 Thin Solid Films 433 119

    [25]

    Ferrari A C, Kleinsorge B, Morrison N A 1999 Appl. Phys. Lett. 85 7191

    [26]

    Chhowalla M, Ferrari A C, Robertson J 2000 Appl. Phys. Lett. 76 1419

    [27]

    Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Engng. Chin. Univ. 20 932 (in Chinese) [胡晓君、曹华珍、郑国渠、曹 帅 2006 高校化学工程学报 20 932]

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长DLC膜的微结构及光学性能. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240145
    [2] 郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马. Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究. 物理学报, 2022, 71(17): 178201. doi: 10.7498/aps.71.20220473
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能. 物理学报, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [6] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [7] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [9] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [10] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [11] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [12] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [13] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [15] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [16] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [17] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [18] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [19] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [20] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究. 物理学报, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
计量
  • 文章访问数:  7170
  • PDF下载量:  877
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-03
  • 修回日期:  2010-01-11
  • 刊出日期:  2010-05-05

/

返回文章
返回