搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响

许雪松 张文芹 金坤 尹淑慧

引用本文:
Citation:

反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响

许雪松, 张文芹, 金坤, 尹淑慧

Effect of vibrational quantum number on stereodynamics of reaction O+HCl→OH+Cl

Xu Xue-Song, Zhang Wen-Qin, Jin Kun, Yin Shu-Hui
PDF
导出引用
  • 在Peterson的高精度从头计算势能面上,运用准经典轨线方法讨论了反应物分子初始振动激发对O+HCl→OH+Cl反应的立体动力学性质的影响.反映两矢量 k-j' 相关的P(θr)函数的分布说明产物的转动角动量 j' 在垂直于反应物相对速度矢量 k 的方向上的排列取向程度随着初始反应物振动量子数的增加而增加;反映三矢量 k-k' - j' 相关的极角分布函数P(r
    The stereodynamical properties of O+HCl→OH+Cl reaction are studied by using the quasi-classical trajectory (QCT) method on Peterson ab initio potential energy surface. The vibrational level and the rotational level of the reactant molecule are taken as v=0—4 and j=0 respectively. The calculation results show that the vibrational quantum number has a considerable influence on the distribution of the k-j'vector correlation. The effects of vibrational quantum number on k-k' -j' three-vector correlation and on generalized polarization dependent differential cross section are minor. The effect of initial vibrational excited state of reactant molecule on the rotational alignment of product molecule is stronger than that on the P(r) distribution of product molecule.
    • 基金项目: 辽宁省高校科研计划(批准号:2009A099),中央高校基本科研业务专项资金(批准号:2009JC09),辽宁省博士科研启动基金(批准号:20061047)资助的课题.
    [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Davidson J A, Sadowski C M, Schiff H I, Streit G E, Howard C J, Jennings D A, Schmeltekopf A L 1976 J. Chem. Phys. 64 57

    [3]

    Basco N, Norrish R G W 1961 Proc. R. Soc. London, Ser. A 260 293

    [4]

    Addison M C, Donovan R J, Gillespie H M 1976 Chem. Phys. Lett. 44 602

    [5]

    Luntz A C 1980 J. Chem. Phys. 73 5393

    [6]

    Park P C, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [7]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [8]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [9]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [10]

    Laganà A, Ochoa de Aspuru G, Garcia E 1995 J. Chem. Phys. 99 17139

    [11]

    Laganà A, Ochoa de Aspuru G, Garcia E 1998 J. Chem. Phys. 108 3886

    [12]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [13]

    Skokov S, Peterson K A, Bowman J M 1998 J. Chem. Phys. 109 2662

    [14]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 2445

    [15]

    Christoffel K M, Kim Y, Skokov S, Bowman J M, Gray S K 1999 Chem. Phys. Lett. 315 275

    [16]

    Case D A, McClelland G M, Heschbach D R 1978 Mol. Phys. 35 541

    [17]

    Miranda M P, Clary D C 1997 J. Chem. Phys. 106 4509

    [18]

    Aoiz F J, Herrero V J, Saez-Rabanos S V 1992 Chem. Phys. 97 7423

    [19]

    Han K L, He G Z, Lou N Q 1993 Chin. Chem. Lett. 4 517

    [20]

    Loesch H 1997 J. Phys. Chem. A 101 7461

    [21]

    Brouard M, Gatenby S D, Joseph D M, Vallance C 2000 J. Chem. Phys. 113 3162

    [22]

    Shafer Ray N E, Orr Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [23]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [24]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [25]

    Chen M D, Wang M L, Han K L, Ding S L 1999 Chem. Phys. Lett. 301 303

    [26]

    Luo W L, Ruan W, Zhang L, Zhu Z H, Fu Y B 2009 Chin. Phys. B 18 167

    [27]

    Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y, Meng Q T 2009 Chin. Phys. B 18 5308

    [28]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [29]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [30]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔 浩、刘新国、许文武、梁景娟、张庆刚 2009 物理学报 58 6926]

    [31]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Compu. Chem. 8 403

    [32]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [33]

    Aoiz F J, Brouard M, Herrero V J, Sáez Rábanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [34]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许 燕、赵 娟、王 军、刘 芳、孟庆田 2010 物理学报 59 3885]

    [35]

    Peterson K A, Skokoy S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [36]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

  • [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Davidson J A, Sadowski C M, Schiff H I, Streit G E, Howard C J, Jennings D A, Schmeltekopf A L 1976 J. Chem. Phys. 64 57

    [3]

    Basco N, Norrish R G W 1961 Proc. R. Soc. London, Ser. A 260 293

    [4]

    Addison M C, Donovan R J, Gillespie H M 1976 Chem. Phys. Lett. 44 602

    [5]

    Luntz A C 1980 J. Chem. Phys. 73 5393

    [6]

    Park P C, Wiesenfeld J R 1989 Chem. Phys. Lett. 163 230

    [7]

    Kruus E J, Niefe B I, Sloan J J 1988 J. Chem. Phys. 88 985

    [8]

    Balucani N, Beneventi L, Casavecchia P, Volpi G G 1991 Chem. Phys. Lett. 180 34

    [9]

    Schinke R 1984 J. Chem. Phys. 80 5510

    [10]

    Laganà A, Ochoa de Aspuru G, Garcia E 1995 J. Chem. Phys. 99 17139

    [11]

    Laganà A, Ochoa de Aspuru G, Garcia E 1998 J. Chem. Phys. 108 3886

    [12]

    Hernandez M L, Redondo C, Laganà A, Ochoa de Aspuru G, Rosi M, Sagamellotti A 1996 J. Chem. Phys. 105 2710

    [13]

    Skokov S, Peterson K A, Bowman J M 1998 J. Chem. Phys. 109 2662

    [14]

    Peterson K A, Skokov S, Bowman J M 1999 J. Chem. Phys. 111 2445

    [15]

    Christoffel K M, Kim Y, Skokov S, Bowman J M, Gray S K 1999 Chem. Phys. Lett. 315 275

    [16]

    Case D A, McClelland G M, Heschbach D R 1978 Mol. Phys. 35 541

    [17]

    Miranda M P, Clary D C 1997 J. Chem. Phys. 106 4509

    [18]

    Aoiz F J, Herrero V J, Saez-Rabanos S V 1992 Chem. Phys. 97 7423

    [19]

    Han K L, He G Z, Lou N Q 1993 Chin. Chem. Lett. 4 517

    [20]

    Loesch H 1997 J. Phys. Chem. A 101 7461

    [21]

    Brouard M, Gatenby S D, Joseph D M, Vallance C 2000 J. Chem. Phys. 113 3162

    [22]

    Shafer Ray N E, Orr Ewing A J, Zare R N 1995 J. Phys. Chem. 99 7591

    [23]

    Han K L, He G Z, Lou N Q 1996 J. Chem. Phys. 105 8699

    [24]

    Wang M L, Han K L, He G Z 1998 J. Chem. Phys. 109 5446

    [25]

    Chen M D, Wang M L, Han K L, Ding S L 1999 Chem. Phys. Lett. 301 303

    [26]

    Luo W L, Ruan W, Zhang L, Zhu Z H, Fu Y B 2009 Chin. Phys. B 18 167

    [27]

    Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y, Meng Q T 2009 Chin. Phys. B 18 5308

    [28]

    Aoiz F J, Brouard M, Enriquez P A 1996 J. Chem. Phys. 105 4964

    [29]

    Brouard M, Lambert H M, Rayner S P, Simons J P 1996 Mol. Phys. 89 403

    [30]

    Kong H, Liu X G, Xu W W, Liang J J, Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese) [孔 浩、刘新国、许文武、梁景娟、张庆刚 2009 物理学报 58 6926]

    [31]

    Zhang C H, Zhang W Q, Chen M D 2009 J. Theor. Compu. Chem. 8 403

    [32]

    Zhang W Q, Cong S L, Zhang C H, Xu X S, Chen M D 2009 J. Phys. Chem. A 113 4192

    [33]

    Aoiz F J, Brouard M, Herrero V J, Sáez Rábanos V, Stark K 1997 Chem. Phys. Lett. 264 487

    [34]

    Xu Y, Zhao J, Wang J, Liu F, Meng Q T 2010 Acta Phys. Sin. 59 3885 (in Chinese) [许 燕、赵 娟、王 军、刘 芳、孟庆田 2010 物理学报 59 3885]

    [35]

    Peterson K A, Skokoy S, Bowman J M 1999 J. Chem. Phys. 111 7446

    [36]

    Skokov S, Peterson K A, Bowman J M 1999 Chem. Phys. Lett. 312 494

  • [1] 唐晓平, 周灿华, 和小虎, 于东麒, 杨阳. 碰撞能对H+CH+→C++H2反应立体动力学性质的影响. 物理学报, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [2] 唐晓平, 和小虎, 周灿华, 杨阳. 反应物分子初始振动激发对H+CH+C++H2反应的影响. 物理学报, 2017, 66(12): 123401. doi: 10.7498/aps.66.123401
    [3] 魏强. 基于4A势能面研究C(3P)+NO(X2)CO(X1+)+N(4S)反应的立体动力学性质. 物理学报, 2015, 64(17): 173401. doi: 10.7498/aps.64.173401
    [4] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [5] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [6] 许雪松, 杨鲲, 孙佳石, 尹淑慧. O+DCl→OD+Cl反应的动力学性质研究. 物理学报, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [7] 马建军. 碰撞能对反应Sr+CH3I→SrI+CH3的立体动力学影响. 物理学报, 2014, 63(6): 063401. doi: 10.7498/aps.63.063401
    [8] 胡梅, 刘新国, 谭瑞山. 碰撞能及反应物振动激发对Ar+H2+→ArH++H反应立体动力学性质的影响. 物理学报, 2014, 63(2): 023402. doi: 10.7498/aps.63.023402
    [9] 徐峰, 郑雨军. 量子相空间纠缠轨线力学. 物理学报, 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [10] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [11] 马建军. 反应物NO的转动激发对反应N(4S)+NO(X2Π)→N2(X3Σg-)+O(3P)影响的立体动力学研究. 物理学报, 2013, 62(2): 023401. doi: 10.7498/aps.62.023401
    [12] 谭瑞山, 刘新国, 胡梅. Li+HF(v = 0–3, j = 0)→LiF+H 反应的立体动力学理论研究. 物理学报, 2013, 62(7): 073105. doi: 10.7498/aps.62.073105
    [13] 李红, 郑斌, 孟庆田. 转动激发对O+HBrOH+Br反应的立体动力学性质的准经典轨线理论研究. 物理学报, 2012, 61(15): 153401. doi: 10.7498/aps.61.153401
    [14] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [15] 王平. C+OH(v=0—3, j=0—3)→CO+H反应的准经典轨线研究. 物理学报, 2011, 60(5): 053401. doi: 10.7498/aps.60.053401
    [16] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [17] 刘新国, 孙海竹, 刘会荣, 张庆刚. O++H2及其同位素取代反应的立体动力学研究. 物理学报, 2010, 59(11): 7796-7802. doi: 10.7498/aps.59.7796
    [18] 孔浩, 刘新国, 许文武, 梁景娟, 张庆刚. He+H+2及其同位素取代反应的立体动力学研究. 物理学报, 2009, 58(10): 6926-6931. doi: 10.7498/aps.58.6926
    [19] 武连文, 程乾生. 关于动力学互相关因子指数的注记. 物理学报, 2005, 54(7): 3027-3028. doi: 10.7498/aps.54.3027
    [20] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
计量
  • 文章访问数:  7495
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-21
  • 修回日期:  2010-01-19
  • 刊出日期:  2010-11-15

/

返回文章
返回