搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度掺杂策略的碳纳米管场效应管性能优化

周海亮 池雅庆 张民选 方粮

引用本文:
Citation:

基于梯度掺杂策略的碳纳米管场效应管性能优化

周海亮, 池雅庆, 张民选, 方粮

Performance optimization of carbon nanotube field effect transistors based on stair-case doping strategy

Zhou Hai-Liang, Chi Ya-Qing, Zhang Min-Xuan, Fang Liang
PDF
导出引用
  • 双极性传输特性是制约碳纳米管场效应管(carbon nanotube field effect transistors,CNFETs)性能提高的一个重要因素.为降低器件的双极性传输特性并获得较大的开关电流比,提出了一种漏端梯度掺杂策略,该策略不仅适合于类MOS碳纳米管场效应管(C-CNFETs),同时也适合于隧穿碳纳米管场效应管(T-CNFETs).基于非平衡格林函数的数值研究结果表明,该策略不仅能有效降低器件的双极传输特性,而且能将器件开关电流比提高数个数量级.进一步研究发现,该掺杂策略在这两类碳纳米管
    The ambipolar transporting characteristic is one of the most important factors that prevent the performance of Carbon Nanotube Field Effect Transistors (CNFETs) from further being improved. In order to reduce the ambipolar conductance and increase the ON-OFF current ratio of the device,a stair-case doping strategy in drain lead,which is suitable for not only the Conventional MOS-like CNFETs (C-CNFETs) but also Tunneling CNFET (T-CNFETs),is proposed in this paper. The non-equilibrium Greens function based simulation results show that this strategy can reduce the ambipolar conductance and increase the ON-OFF current ratio of the device effectively. Further study shows that many differences exist with using this stair-case doping strategy applied in C-CNFETs and T-CNFETs. First,the potential band pinning in stair-case doped C-CNFETs would weaken the ON-state performance of the device,while no band pinning exists in stair-case doped T-CNFETs. Second,applying such a stair-case doping strategy to both source and drain leads can further increase the device performances in C-CNFETs but not T-CNFEts. Third,the transporte property of T-CNFETs is dependent more strongly on the width of lightly doped drain region than that of C-CNFETs. However,certain device area would be costly because of using this stair-case doping strategy. So,much attention should be paid to the choice of device structure,doping concentration and lightly doped drain region width,to obtain a best tradeoff among speed,power and device area,in application.
    • 基金项目: 国家高技术研究发展计划(批准号:2009AA01Z114)资助的课题.
    [1]

    Zhang Z X,Hou S M,Zhao X Y,Zhang J,Sun J P,Liu W M,Xue Z Q,Shi Z J,Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [2]

    Tang N S,Yan X H,Ding J H 2004 Acta Phys. Sin. 53 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 53 333 ]

    [3]

    Li J P,Zhang W J,Zhang Q F,Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李剑萍、张文静、张琦锋、吴锦雷 2007 物理学报 56 1054]

    [4]

    Javey A,Guo J,Wang Q,Lundstron M,Dai H 2003 Lett. to Nature 424 654

    [5]

    Heinze S,Tersoff J,Martel R,Derycke V,Appenzeller J,Avouris Ph 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J,Klinke C,Afzali A,Avouris Ph 2005 Appl. Phys. Lett. 86 123108

    [7]

    Lin Y M,Appenzeller J,Knoch J,Avouris Ph 2005 IEEE Trans. Nano. 4 481

    [8]

    Pourfath M,Ungersboeck E,Gehring A,Kosina H 2005 J.Comput Electron 4 75

    [9]

    Hassaninia I,Sheikhi M H,Kordrostami Z 2008 Solid-State Electronics 52 980

    [10]

    Pourfath M,Kosina H,Selberherr S 2007 J. Comput Electron 6 243

    [11]

    Chen Z H,Farmer D,Xu S,Gordon R,Avouris P,Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y,Ohno Y,Kishimoto S,Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan 2006 Oct p247

    [13]

    Javey A,Tu R,Farmer D,Guo J,Gordon D,Dai H 2005 Nano Lett. 5 345

    [14]

    Lee R S,Kim H J,Fischer J E,Thess A,Smalley R E 1997 Nature 388 255

    [15]

    Takenobu T,Kanbara T,Akima N,Takahashi T,Shiraishi M,Tsukagoshi K,Kataura H,Aoyagi Y,Iwasa Y 2005 Advanced Materials 17 2430

    [16]

    Rao A M,Eklund P C,Bandow S,Thess A,Smalley R E 1997 Nature 388 257

    [17]

    Afzali A,Phaedon A,Jia C,Christian K,Paul M US 2007 Patent 7253431

    [18]

    Fan X,Dickey E C,Eklund P C,Williams K A,Grigorian L,Buczko R 2000 Phys. Rev. Lett. 84 4621

    [19]

    Zhou C,Kong J,Yenilmez E,Dai H 2000 Science 290 1552

    [20]

    Knoch J,Appenzeller J,2008,Phys. Stat. Sol. 205 679

    [21]

    Knoch J,Mantl S,Appenzeller J 2007 Solid-State Electronics 51 572

    [22]

    Duclaux L 2002 Carbon 40 1751

    [23]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [24]

    Zhou H L,Zhang M X,Hao Y 2009 IEEE INEC,HongKong China 2009 p56

    [25]

    Venugopal R,Ren Z,Datta S,Lundstrom M S,Jovanovic D 2002 J. Appl. Phys. 92 3730

    [26]

    Fiori G,Iannaccone G,Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [27]

    Guo J,Ali J,Dai h J,Mark L 2004 IEDM Tech Digest San Francisco,Dec,2004 p703—706

    [28]

    Tong J N,Zou X C,Shen X B 2004,Chin. Phys. 13 1815

    [29]

    Appenzeller J,Lin Y M,Knoch J,Chen Z H,Avouris P 2005 IEEE Trans. Electron Device 52 2568

  • [1]

    Zhang Z X,Hou S M,Zhao X Y,Zhang J,Sun J P,Liu W M,Xue Z Q,Shi Z J,Gu Z N 2002 Acta Phys. Sin. 51 434 (in Chinese) [张兆祥、侯士敏、赵兴钰、张 浩、孙建平、刘惟敏、薛增泉、施祖进、顾镇南 2002 物理学报 51 434]

    [2]

    Tang N S,Yan X H,Ding J H 2004 Acta Phys. Sin. 53 333 (in Chinese) [唐娜斯、颜晓红、丁建文 2004 物理学报 53 333 ]

    [3]

    Li J P,Zhang W J,Zhang Q F,Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李剑萍、张文静、张琦锋、吴锦雷 2007 物理学报 56 1054]

    [4]

    Javey A,Guo J,Wang Q,Lundstron M,Dai H 2003 Lett. to Nature 424 654

    [5]

    Heinze S,Tersoff J,Martel R,Derycke V,Appenzeller J,Avouris Ph 2002 Phys. Rev. Lett. 89 106801

    [6]

    Chen J,Klinke C,Afzali A,Avouris Ph 2005 Appl. Phys. Lett. 86 123108

    [7]

    Lin Y M,Appenzeller J,Knoch J,Avouris Ph 2005 IEEE Trans. Nano. 4 481

    [8]

    Pourfath M,Ungersboeck E,Gehring A,Kosina H 2005 J.Comput Electron 4 75

    [9]

    Hassaninia I,Sheikhi M H,Kordrostami Z 2008 Solid-State Electronics 52 980

    [10]

    Pourfath M,Kosina H,Selberherr S 2007 J. Comput Electron 6 243

    [11]

    Chen Z H,Farmer D,Xu S,Gordon R,Avouris P,Appenzeller J 2008 IEEE Trans. Device Letters 29 183

    [12]

    Nosho Y,Ohno Y,Kishimoto S,Mizutani T 2006 International Microprocess and Nanotechnology Conference Kamakura city of Japan 2006 Oct p247

    [13]

    Javey A,Tu R,Farmer D,Guo J,Gordon D,Dai H 2005 Nano Lett. 5 345

    [14]

    Lee R S,Kim H J,Fischer J E,Thess A,Smalley R E 1997 Nature 388 255

    [15]

    Takenobu T,Kanbara T,Akima N,Takahashi T,Shiraishi M,Tsukagoshi K,Kataura H,Aoyagi Y,Iwasa Y 2005 Advanced Materials 17 2430

    [16]

    Rao A M,Eklund P C,Bandow S,Thess A,Smalley R E 1997 Nature 388 257

    [17]

    Afzali A,Phaedon A,Jia C,Christian K,Paul M US 2007 Patent 7253431

    [18]

    Fan X,Dickey E C,Eklund P C,Williams K A,Grigorian L,Buczko R 2000 Phys. Rev. Lett. 84 4621

    [19]

    Zhou C,Kong J,Yenilmez E,Dai H 2000 Science 290 1552

    [20]

    Knoch J,Appenzeller J,2008,Phys. Stat. Sol. 205 679

    [21]

    Knoch J,Mantl S,Appenzeller J 2007 Solid-State Electronics 51 572

    [22]

    Duclaux L 2002 Carbon 40 1751

    [23]

    Luryi S 1988 Appl. Phys. Lett. 52 501

    [24]

    Zhou H L,Zhang M X,Hao Y 2009 IEEE INEC,HongKong China 2009 p56

    [25]

    Venugopal R,Ren Z,Datta S,Lundstrom M S,Jovanovic D 2002 J. Appl. Phys. 92 3730

    [26]

    Fiori G,Iannaccone G,Klimeck G 2007 IEEE Trans. Electron Device 6 475

    [27]

    Guo J,Ali J,Dai h J,Mark L 2004 IEDM Tech Digest San Francisco,Dec,2004 p703—706

    [28]

    Tong J N,Zou X C,Shen X B 2004,Chin. Phys. 13 1815

    [29]

    Appenzeller J,Lin Y M,Knoch J,Chen Z H,Avouris P 2005 IEEE Trans. Electron Device 52 2568

  • [1] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [2] 肖佳勇, 谭兴毅, 杨贝贝, 任达华, 左安友, 傅华华. 氮化硼纳米带功能化碳纳米管的热自旋输运性质. 物理学报, 2019, 68(5): 057301. doi: 10.7498/aps.68.20181968
    [3] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [4] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [5] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [6] 刘兴辉, 赵宏亮, 李天宇, 张仁, 李松杰, 葛春华. 基于异质双栅电极结构提高碳纳米管场效应晶体管电子输运效率. 物理学报, 2013, 62(14): 147308. doi: 10.7498/aps.62.147308
    [7] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [8] 赵晓辉, 蔡理, 张鹏. 声子散射下碳纳米管场效应管建模方法研究. 物理学报, 2013, 62(10): 100301. doi: 10.7498/aps.62.100301
    [9] 赵晓辉, 蔡理, 张鹏. 一种碳纳米管场效应管的HSPICE模型. 物理学报, 2013, 62(13): 130506. doi: 10.7498/aps.62.130506
    [10] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [11] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响. 物理学报, 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [12] 严雄伟, 於海武, 郑建刚, 李明中, 蒋新颖, 段文涛, 曹丁象, 王明哲, 单小童, 张永亮. 梯度掺杂Yb ∶YAG重频激光器热管理研究. 物理学报, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [13] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴. 梯度掺杂与均匀掺杂GaN光电阴极的对比研究. 物理学报, 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [14] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [15] 周海亮, 张民选, 方粮. 一种基于双栅材料的单极性类金属氧化物半导体碳纳米管场效应管设计方法. 物理学报, 2010, 59(7): 5010-5017. doi: 10.7498/aps.59.5010
    [16] 谢根全, 夏 平. 基于微极性弹性力学的碳纳米管中波的传播特性. 物理学报, 2007, 56(12): 7070-7077. doi: 10.7498/aps.56.7070
    [17] 袁剑辉, 程玉民. 单壁碳纳米管杨氏模量的掺杂效应. 物理学报, 2007, 56(8): 4810-4816. doi: 10.7498/aps.56.4810
    [18] 李萍剑, 张文静, 张琦锋, 吴锦雷. 基于碳纳米管场效应管构建的纳电子逻辑电路. 物理学报, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [19] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响. 物理学报, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [20] 刘兴辉, 朱长纯, 曾凡光, 贺永宁, 保文星. 公度双壁碳纳米管层间耦合对其场发射特性影响的研究. 物理学报, 2006, 55(6): 2830-2837. doi: 10.7498/aps.55.2830
计量
  • 文章访问数:  6893
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-30
  • 修回日期:  2010-03-03
  • 刊出日期:  2010-11-15

/

返回文章
返回