搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雷声在大气中传播的吸收衰减特性研究

张景川 袁萍 欧阳玉花

引用本文:
Citation:

雷声在大气中传播的吸收衰减特性研究

张景川, 袁萍, 欧阳玉花

Characteristics of absorption and attenuation of thunder propagating in atmosphere

Ouyang Yu-Hua, Yuan Ping, Zhang Jing-Chuan
PDF
导出引用
  • 选取青海大通地区一次地闪过程的雷声信号,利用信号处理理论,得到了观测点雷声的频谱;依据声波在大气中传播的理论,计算了大气对雷声传播的吸声系数,分析了吸声系数随环境因素的变化,结果表明:闪电发生距离、大气湿度和温度是影响雷声传播的主要因素.在一定闪电距离和大气环境下,吸声系数随频率的增加而增大;频率小于100 Hz的雷声衰减很慢,空气相对湿度和温度对其吸声系数的影响也比较小,在一定距离内的衰减可以忽略;频率大于500 Hz的高频信号吸声系数较大,并且随相对湿度的增加而快速递增;吸声系数随温度呈非单调变化,频
    Using the thunder signals of a C-G lightning process recorded in the Qinghai region and the theory of signal processing, the frequency spectrum of thunder at observation point is obtained; Based on the propagation theory of acoustic waves, the absorption coefficients in air are calculated and their variations with environmental factors are analyzed. The results show that under a certain profpagation distance and environmental condition, the absorption coefficient increases with frequency increasing. The attenuation of signal below 100Hz is negligible under a certain propagation distance and environmental factors. The attenuations for high-frequency signals of more than 500 Hz are large, their absorption coefficients increase rapidly with the relative humidity inereasing and vary nor-monotonical with temperature. It is deduced that high frequency components of more than 500Hz should be contained in the thunder source.
    • 基金项目: 国家自然科学基金(批准号:40475007),西北师范大学科技创新工程项目(批准号: NWNU -KJCXGC-03-21)资助的课题.
    [1]

    Uman M A 2001 The Lightning Discharge ( New york: Dover )p377

    [2]

    Few A A 1968 Thunder Ph.D. Dissertation (Texas: Rice university)p26

    [3]

    Bhartendu H 1968 Can.J.Phys.46 269

    [4]

    Few A A 1969 J.geophys.Res.74 6926

    [5]

    Holmes C R, Brook M 1971 J.geophys.Res.76 2106

    [6]

    Remillard W J 1960 The acoustics of thunder (Cambridge: Havard University)p387

    [7]

    Harris C M 1967 Absorption of sound in air versus humidity and temperature NASA Report CR-647 (New york: Columbia University)p34

    [8]

    Bass H E, Losely R E 1975 J.Acoustsoc.Am.57 822

    [9]

    Few A A 1982 Acoustic radiations from lightning. In Handbook of Atmospherics,ed. H.Volland, vol.Ⅱ(Boca Raton, Florida: CRC Press )p257

    [10]

    Few A A 1995 Acoustic radiations from lightning. In Handbook of Atmospherics ,ed. H. Volland,vol.Ⅱ (Boca Raton, Florida: CRC Press)p11

    [11]

    Yang X R 2007 Atmospheric Acoustics (Beijing: Science Press)p120 (in Chinese) [杨训仁 2007 大气声学(北京:科学出版社)第120页]

    [12]

    Ma D Y, Shen H 1983 Acoustics Handbook (Beijing: Science Press)p113 (in Chinese) [马大猷、沈 壕1983 声学手册(北京:科学出版社)第113页]

    [13]

    Shen X Z, Yuan P 2007 Acta Phys.Sin.56 5715(in Chinese) [申晓志、袁 萍 2007物理学报 56 5715]

    [14]

    Evans L B, Sutherland L C 1970 Wyle Rep. N o. WR 70-14.for U.S. Army Res. Off 1 14

    [15]

    Monk R 1969 J.Acoust.soc.Amer. 46 580

    [16]

    Evans L B 1972 Acoust.soc. Amer. 51 409

    [17]

    Yuan P, OuYang Y H, Lv S H 2006 Plateau Meteorology 25 503(in Chinese) [袁 萍、欧阳玉花、吕世华 2006 高原气象 25 503]

    [18]

    Depass P 1994 J. Geophys. Res. 99 25 933

    [19]

    Hao Z Q, YU J, Zhang J, Yuan X H 2005 Acta Phys.Sin.54 1290 (in Chinese) [郝作强、俞 进、张 杰、远晓辉 2005 物理学报 54 1290]

  • [1]

    Uman M A 2001 The Lightning Discharge ( New york: Dover )p377

    [2]

    Few A A 1968 Thunder Ph.D. Dissertation (Texas: Rice university)p26

    [3]

    Bhartendu H 1968 Can.J.Phys.46 269

    [4]

    Few A A 1969 J.geophys.Res.74 6926

    [5]

    Holmes C R, Brook M 1971 J.geophys.Res.76 2106

    [6]

    Remillard W J 1960 The acoustics of thunder (Cambridge: Havard University)p387

    [7]

    Harris C M 1967 Absorption of sound in air versus humidity and temperature NASA Report CR-647 (New york: Columbia University)p34

    [8]

    Bass H E, Losely R E 1975 J.Acoustsoc.Am.57 822

    [9]

    Few A A 1982 Acoustic radiations from lightning. In Handbook of Atmospherics,ed. H.Volland, vol.Ⅱ(Boca Raton, Florida: CRC Press )p257

    [10]

    Few A A 1995 Acoustic radiations from lightning. In Handbook of Atmospherics ,ed. H. Volland,vol.Ⅱ (Boca Raton, Florida: CRC Press)p11

    [11]

    Yang X R 2007 Atmospheric Acoustics (Beijing: Science Press)p120 (in Chinese) [杨训仁 2007 大气声学(北京:科学出版社)第120页]

    [12]

    Ma D Y, Shen H 1983 Acoustics Handbook (Beijing: Science Press)p113 (in Chinese) [马大猷、沈 壕1983 声学手册(北京:科学出版社)第113页]

    [13]

    Shen X Z, Yuan P 2007 Acta Phys.Sin.56 5715(in Chinese) [申晓志、袁 萍 2007物理学报 56 5715]

    [14]

    Evans L B, Sutherland L C 1970 Wyle Rep. N o. WR 70-14.for U.S. Army Res. Off 1 14

    [15]

    Monk R 1969 J.Acoust.soc.Amer. 46 580

    [16]

    Evans L B 1972 Acoust.soc. Amer. 51 409

    [17]

    Yuan P, OuYang Y H, Lv S H 2006 Plateau Meteorology 25 503(in Chinese) [袁 萍、欧阳玉花、吕世华 2006 高原气象 25 503]

    [18]

    Depass P 1994 J. Geophys. Res. 99 25 933

    [19]

    Hao Z Q, YU J, Zhang J, Yuan X H 2005 Acta Phys.Sin.54 1290 (in Chinese) [郝作强、俞 进、张 杰、远晓辉 2005 物理学报 54 1290]

  • [1] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, 2021, 70(24): 244203. doi: 10.7498/aps.70.20210562
    [2] 陈海霞, 林书玉. 超声在液体中的非线性传播及反常衰减. 物理学报, 2020, 69(13): 134301. doi: 10.7498/aps.69.20200425
    [3] 管义钧, 孙宏祥, 袁寿其, 葛勇, 夏建平. 近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性. 物理学报, 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [4] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响. 物理学报, 2016, 65(23): 234301. doi: 10.7498/aps.65.234301
    [5] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [6] 顾金桃, 盛美萍. 稳态损耗因子的衰减法识别研究. 物理学报, 2015, 64(18): 184301. doi: 10.7498/aps.64.184301
    [7] 张俊杰. 基于波传播法的周期复合板振动带隙衰减特性研究. 物理学报, 2014, 63(22): 224302. doi: 10.7498/aps.63.224302
    [8] 欧阳玉花, 袁萍, 贾向东, 王小云, 薛思敏. 用信号处理技术及传播理论还原雷声频谱. 物理学报, 2013, 62(8): 084303. doi: 10.7498/aps.62.084303
    [9] 吕君, 赵正予, 周晨. 次声波在非均匀运动大气中非线性传播特性的研究. 物理学报, 2011, 60(10): 104301. doi: 10.7498/aps.60.104301
    [10] 马春光, 赵青, 罗先刚, 何果, 郑灵, 刘建卫. 毫米波在等离子体中的衰减特性研究. 物理学报, 2011, 60(5): 055201. doi: 10.7498/aps.60.055201
    [11] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性. 物理学报, 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [12] 宫玉彬, 邓明金, 段兆云, 吕明毅, 魏彦玉, 王文祥. 衰减器对螺旋线慢波结构高频特性影响的理论研究. 物理学报, 2007, 56(8): 4497-4503. doi: 10.7498/aps.56.4497
    [13] 陈京元, 陈式刚, 王光瑞. 间歇性大气湍流中光传播问题的近Gauss极限分析. 物理学报, 2005, 54(7): 3123-3131. doi: 10.7498/aps.54.3123
    [14] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性. 物理学报, 2002, 51(6): 1317-1320. doi: 10.7498/aps.51.1317
    [15] 姜文红, 罗四维, 中村庆久. 写磁头对记录介质中输出信号的影响. 物理学报, 2002, 51(1): 167-170. doi: 10.7498/aps.51.167
    [16] 朱为勇, 王耀俊, 宁伟. 纤维复合媒质中的超声衰减. 物理学报, 1996, 45(1): 58-64. doi: 10.7498/aps.45.58
    [17] 杨瑞青, 熊诗杰, 蔡建华. 金属超晶格中的声衰减. 物理学报, 1984, 33(7): 1058-1061. doi: 10.7498/aps.33.1058
    [18] 王克斌, 李士, 唐孝威. 应用共振吸收谱仪测量Al对γ射线的衰减系数. 物理学报, 1981, 30(9): 1279-1283. doi: 10.7498/aps.30.1279
    [19] 陶荣甲. 从光波的衰减测量决定大气气溶胶的谱分布. 物理学报, 1980, 29(2): 161-172. doi: 10.7498/aps.29.161
    [20] 魏荣爵. 低频声音在水雾中衰减的测量. 物理学报, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
计量
  • 文章访问数:  8110
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-03-31
  • 修回日期:  2010-02-18
  • 刊出日期:  2010-11-15

/

返回文章
返回