搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型

王冠宇 张鹤鸣 王晓艳 吴铁峰 王斌

引用本文:
Citation:

亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型

王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌

Two-dimensional threshold voltage model of sub-100 nm strained-Si/SiGe nMOSFET

Wang Guan-Yu, Zhang He-Ming, Wang Xiao-Yan, Wu Tie-Feng, Wang Bin
PDF
导出引用
  • 本文基于二维泊松方程,建立了适用于亚100 nm应变Si/SiGe nMOSFET的阈值电压理论模型.为了保证该模型的准确性,同时考虑了器件尺寸减小所导致的物理效应,如短沟道效应,量子化效应等.通过将模型的计算结果与二维器件模拟器ISE的仿真结果进行对比分析,证明了本文提出的模型的正确性.最后,还讨论了亚100 nm器件中常规工艺对阈值电压的影响.该模型为亚100 nm小尺寸应变Si器件的分析设计提供了一定的参考.
    In this paper, based on the two-dimensional (2D) Possion's equation, an analytical model of threshold voltage, which is applied to a sub-100nm strained-Si/SiGe nMOSFET, is pro- posed. The secondary effects induced by reducing size such as short-channel effects, quantum mechanical effects are also taken into consideration in order to ensure the accuracy of the model. Then the evidence for the validity of our model is derived from the comparison between analytical results and the simulation data from the 2D device simulator ISE. Finally, the influence of conventional arts in sub-100 nm device fabrication on threshold voltage is also discussed. The proposed model can also be easily used for reasonable analysis and design of sub-100nm strained-Si/SiGe nMOSFET.
    • 基金项目: 国家部委资助项目(批准号:51308040203, 6139801),中央高校基本科研业务费(批准号:72105499, 72104089)和陕西省自然科学基础研究计划(批准号:2010JQ8008)资助的课题. # Email:SiGeBiCMOS@foxmail.com
    [1]

    O'Neil A G, Antoniadis D A 1996 IEEE Trans.Electron Devices 43 911

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin.Phys. 16 3827

    [3]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军、张鹤鸣、胡辉勇、宣荣喜、戴显英 2009 物理学报 58 7947]

    [4]

    Wang G Y, Zhang H M, Song J J, Wang X Y, Qin S S, Qu J T 2010 Acta Phys. Sin. (in press) [王冠宇、张鹤鸣、宋建军、王晓艳、秦珊珊、屈江涛 2010 物理学报](已接受)

    [5]

    Karthik C, Zhou X, Chiah S B 2004 NSTI-Nanotech 2 179

    [6]

    Tinoco J C, Garcia R, Iňiguez, Cerdeira A, Estrada M 2008 Semicond.Sci.Tech nol. 23 035017

    [7]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R X, Song J J 2009 Acta Phys.Sin. 58 4948 (in Chinese) [张志锋、张鹤鸣、胡辉勇、宣荣喜、宋建军 2009 物理学报 58 4948]

    [8]

    Kumar M J, Venkataraman V, Nawal S 2007 J. Comput. Electron. 6 439

    [9]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans.Electron Devices 51 2069

    [10]

    Janik T, Majkusiak B 1994 J.Appl.Phys. 75 5186

    [11]

    Xu J P, Li Y P, Lai P T, Chen W B, Xu S G, Guan J G 2008 Microelectronics Reliability 48 23

    [12]

    Yang N, Henson W K, Hauser J R, Wortman J J 1999 IEEE Trans. Electron Devices 46 1464

    [13]

    Stern F 1972 Phys.Rev.B 5 4891

    [14]

    Zhang W M, Fossum J G 2005 IEEE Trans.Electron Devices 52 263

    [15]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军、张鹤鸣、宣荣喜、胡辉勇、戴显英 2009 物理学报 58 4958]

    [16]

    Suzuki K 2000 IEEE Trans.Electron Devices 47 1202

    [17]

    Low T, Li M F, Samudra G, Yeo Y C, Zhu C, Chin A, Kwong D L 2005 IEEE Trans. Electron Devices 52 2430

    [18]

    Xu S L, Xie M X, Zhang Z F 2007 SiGe Microelectronics Technology (Beijing: National Defense Industry Press) p269 (in Chinese) [徐世六、谢孟贤、张正璠 2007 SiGe微电子技术(北京:国防工业出版社)第269页]

    [19]

    Zou X, Xu J P, Li C X, Lai P T, Chen W B 2007 Microelectronics Reliability 47 391

    [20]

    Yu B, Clement H J, Wann 1997 IEEE Trans. Electron Devices 44 627

  • [1]

    O'Neil A G, Antoniadis D A 1996 IEEE Trans.Electron Devices 43 911

    [2]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin.Phys. 16 3827

    [3]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2009 Acta Phys. Sin. 58 7947 (in Chinese) [宋建军、张鹤鸣、胡辉勇、宣荣喜、戴显英 2009 物理学报 58 7947]

    [4]

    Wang G Y, Zhang H M, Song J J, Wang X Y, Qin S S, Qu J T 2010 Acta Phys. Sin. (in press) [王冠宇、张鹤鸣、宋建军、王晓艳、秦珊珊、屈江涛 2010 物理学报](已接受)

    [5]

    Karthik C, Zhou X, Chiah S B 2004 NSTI-Nanotech 2 179

    [6]

    Tinoco J C, Garcia R, Iňiguez, Cerdeira A, Estrada M 2008 Semicond.Sci.Tech nol. 23 035017

    [7]

    Zhang Z F, Zhang H M, Hu H Y, Xuan R X, Song J J 2009 Acta Phys.Sin. 58 4948 (in Chinese) [张志锋、张鹤鸣、胡辉勇、宣荣喜、宋建军 2009 物理学报 58 4948]

    [8]

    Kumar M J, Venkataraman V, Nawal S 2007 J. Comput. Electron. 6 439

    [9]

    Nayfeh H M, Hoyt J L, Antoniadis D A 2004 IEEE Trans.Electron Devices 51 2069

    [10]

    Janik T, Majkusiak B 1994 J.Appl.Phys. 75 5186

    [11]

    Xu J P, Li Y P, Lai P T, Chen W B, Xu S G, Guan J G 2008 Microelectronics Reliability 48 23

    [12]

    Yang N, Henson W K, Hauser J R, Wortman J J 1999 IEEE Trans. Electron Devices 46 1464

    [13]

    Stern F 1972 Phys.Rev.B 5 4891

    [14]

    Zhang W M, Fossum J G 2005 IEEE Trans.Electron Devices 52 263

    [15]

    Song J J, Zhang H M, Xuan R X, Hu H Y, Dai X Y 2009 Acta Phys. Sin. 58 4958 (in Chinese) [宋建军、张鹤鸣、宣荣喜、胡辉勇、戴显英 2009 物理学报 58 4958]

    [16]

    Suzuki K 2000 IEEE Trans.Electron Devices 47 1202

    [17]

    Low T, Li M F, Samudra G, Yeo Y C, Zhu C, Chin A, Kwong D L 2005 IEEE Trans. Electron Devices 52 2430

    [18]

    Xu S L, Xie M X, Zhang Z F 2007 SiGe Microelectronics Technology (Beijing: National Defense Industry Press) p269 (in Chinese) [徐世六、谢孟贤、张正璠 2007 SiGe微电子技术(北京:国防工业出版社)第269页]

    [19]

    Zou X, Xu J P, Li C X, Lai P T, Chen W B 2007 Microelectronics Reliability 47 391

    [20]

    Yu B, Clement H J, Wann 1997 IEEE Trans. Electron Devices 44 627

计量
  • 文章访问数:  7113
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-29
  • 修回日期:  2010-10-19
  • 刊出日期:  2011-07-15

/

返回文章
返回