搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏斜椭圆激光驻波场作用下中性原子沉积纳米光栅结构特性分析

张文涛 朱保华 黄静 熊显名

引用本文:
Citation:

偏斜椭圆激光驻波场作用下中性原子沉积纳米光栅结构特性分析

张文涛, 朱保华, 黄静, 熊显名

Chromium atom deposition in elliptical standing wave filed

Zhang Wen-Tao, Zhu Bao-Hua, Huang Jing, Xiong Xian-Ming
PDF
导出引用
  • 分析了椭圆激光驻波场的偏斜对中性原子运动过程和沉积过程的影响,对不同偏斜角度椭圆激光驻波场作用下中性铬原子沉积纳米光栅结构的特性进行了仿真研究,由仿真结果可以看出,随着偏斜椭圆形激光束偏斜角的增加,对应于不同y平面,激光驻波场汇聚中性原子所形成纳米光栅条纹的对比度不断减小、半高宽不断增大.当椭圆长短轴之比为2:1条件下,椭圆激光驻波场的偏斜角为0时,纳米光栅的条纹半高宽为3.2 nm,条纹对比度为36:1,而当偏斜角为15时,激光驻波场中心位置处的沉积条纹的半高宽为6.5 nm,条纹对比度为24:1,而当椭圆激光驻波场偏斜角度达到30时,沉积条纹的单峰结构将会产生分裂,形成了双峰结构,且随着偏斜角的增加,沉积条纹的分裂越严重,纳米光栅的沉积质量越差.对于其他长短轴比例条件下的激光场亦可根据比例关系获得相应的纳米光栅沉积特性.
    Direct-write atom lithography is a new technique in which resonant light is used to pattern an atomic beam and the nanostructures are formed when the atoms deposit on a substrate. The motorial characteristics of chromium atoms in an elliptical standing wave filed are discussed, and the simulation results are given with different deflective angles of elliptical standing wave. The full width at half maximum (FWHM) is 3.2 nm and the contrast is 36 ∶1 with a deflective angle of 0. The FWHM is 6.5nm and the contrast is 24 ∶1 with a deflective angel of 15, but when the deflective angle reaches 30, the stripe splits and two-peak configuration is formed.
    • 基金项目: 国家自然科学基金(批准号:11064002,11061011)资助的课题.
    [1]

    Drodofsky U, Stuhler J, Brezger B, Schulze Th, Drewsen M, Pfau T, Mlynek J 1997 Microelectronic Engineering 35 285

    [2]

    Chen Y P, Chen X N, Li Z, Chen X Z 2003 Micronanoelectronic Technology 7 546 (in Chinese)[陈元培、陈旭南、李 展、陈献忠 2003 微纳电子技术 7 546]

    [3]
    [4]
    [5]

    Mutzel M, Rasbach U, Meschede D, Burstedde C, Braun J, Kunoth A, Peithmann K, Buse K 2003 Appl. Phys. B 77 1

    [6]

    Zhang W T, Li T B 2007 Chinese Journal of Quantum Electronics 24 85(in Chinese)[张文涛、李同保 2007 量子电子学报 24 85]

    [7]
    [8]

    Zeng Z D, Shen H Y 1990 Optronics Lasers 1 168 (in Chinese)[曾振东、沈鸿元 1990 光电子激光 1 168]

    [9]
    [10]
    [11]

    Zhen C L, Li T B, Ma Y, Ma S S, Zhang B W 2006 Atca Phys. Sin. 55 4528(in Chinese)[郑春兰、李同保、马 艳、马姗姗、张宝武 2006 物理学报 55 4528]

    [12]
    [13]

    Zhao M, Wang Z S, Ma B, Li F S 2008 Atca Opti. Sin. 28 381(in Chinese)[赵 敏、 王占山、马 彬、李佛生 2008 光学学报 28 381]

    [14]
    [15]

    Myszkiewicz G, Hohlfeld J, Toonen A J 2004 Appl. Phys. Lett. 85 3842

  • [1]

    Drodofsky U, Stuhler J, Brezger B, Schulze Th, Drewsen M, Pfau T, Mlynek J 1997 Microelectronic Engineering 35 285

    [2]

    Chen Y P, Chen X N, Li Z, Chen X Z 2003 Micronanoelectronic Technology 7 546 (in Chinese)[陈元培、陈旭南、李 展、陈献忠 2003 微纳电子技术 7 546]

    [3]
    [4]
    [5]

    Mutzel M, Rasbach U, Meschede D, Burstedde C, Braun J, Kunoth A, Peithmann K, Buse K 2003 Appl. Phys. B 77 1

    [6]

    Zhang W T, Li T B 2007 Chinese Journal of Quantum Electronics 24 85(in Chinese)[张文涛、李同保 2007 量子电子学报 24 85]

    [7]
    [8]

    Zeng Z D, Shen H Y 1990 Optronics Lasers 1 168 (in Chinese)[曾振东、沈鸿元 1990 光电子激光 1 168]

    [9]
    [10]
    [11]

    Zhen C L, Li T B, Ma Y, Ma S S, Zhang B W 2006 Atca Phys. Sin. 55 4528(in Chinese)[郑春兰、李同保、马 艳、马姗姗、张宝武 2006 物理学报 55 4528]

    [12]
    [13]

    Zhao M, Wang Z S, Ma B, Li F S 2008 Atca Opti. Sin. 28 381(in Chinese)[赵 敏、 王占山、马 彬、李佛生 2008 光学学报 28 381]

    [14]
    [15]

    Myszkiewicz G, Hohlfeld J, Toonen A J 2004 Appl. Phys. Lett. 85 3842

计量
  • 文章访问数:  8174
  • PDF下载量:  1320
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-09-29
  • 修回日期:  2010-12-10
  • 刊出日期:  2011-05-05

/

返回文章
返回