搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿)

吴宝嘉 韩永昊 彭刚 金逢锡 顾广瑞 高春晓

引用本文:
Citation:

金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿)

吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓

The effect of variation in pressure-induced electrode position on the measurement accuracy of sample conductivity in a diamond anvil cell(Retracted Article)

Wu Bao-Jia, Han Yong-Hao, Peng Gang, Jin Feng-Xi, Gu Guang-Rui, Gao Chun-Xiao
PDF
导出引用
  • 利用有限元分析方法,研究了金刚石对顶砧中电极与样品接触点位置变化对范德堡法测量样品电阻率精度的影响.结果表明:当电极中心与样品边缘的间距bd/9(d为样品直径)时能得到精确的电阻率测量结果;当电极位置远离样品边缘而逐渐接近样品中心时,其位置变化对电阻率测量精度的影响迅速增大;相同的电极位置变化对具有较大电阻率的半导体样品电阻率测量精度的影响更明显.
    Using the finite element analysis, we study the effect of variation in pressure-induced electrode position on the measurement accuracy of the sample conductivity in diamond anvil cell with the Van der Pauw method. The results show that the electrode contact placement and electrode size play key roles in influencing the conductivity measurement accuracy. Theoretical computation reveals that the Van der Pauw method can provide an accurate result when the spacing between electrode center and sample periphery b is less than or equal to d/9 (d is the sample diameter). Otherwise, the closer to the sample center of the contact location, the more rapidly the sample conductivity accuracy error increases. Such an effect is more significant for the semiconductor sample with high resistivity with the electrode position variation is the same.
    • 基金项目: 国家自然科学基金(批准号:11164031, 50772041, 50772043, 10874053, 11074094, 50802033)和吉林省教育厅科学技术研究计划(批准号:200927)资助的课题.
    [1]

    Grzybowski T A, Ruoff A L 1984 Phys. Rev. Lett. 53 489

    [2]
    [3]

    Sakai N, Kajiwara T,Tsuji K, Minomura S 1982 Rev.Sci.Instrum. 53 4992502

    [4]
    [5]

    Weir S T, Akella J, Aracne-Ruddle C, Vohra Y K, Catledge S A 2000 Appl. Phys. Lett. 77 3400

    [6]

    Petersen C L, Grey F, Shiraki I, Hasegawa S H 2000 Appl. Phys. Lett. 77 3782

    [7]
    [8]

    Patterson J R, Catledge S A, Vohra Y K, Akella J, Weir S T 2000 Phys. Rev. Lett. 85 5364

    [9]
    [10]
    [11]

    Velisavljevic N, MacMinn K M, Vohra Y K, Weir S T 2004 Appl. Phys. Lett. 84 927

    [12]

    Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T, Li Y, Li X, Liu J 2005 Appl. Phys. Lett. 86 064104

    [13]
    [14]

    Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912

    [15]
    [16]
    [17]

    Li M, Gao C X, Ma Y Z, Wang D, Li Y, Liu J 2007 Appl. Phys. Lett. 90 113507

    [18]

    He C Y, Gao C X, Ma Y Z, Li M, Hao A M, Huang X W, Liu B G, Zhang D M, Yu C L, Zou G T, Li Y C, Li H, Li X D, Liu J 2007 Appl. Phys. Lett. 91 092124

    [19]
    [20]
    [21]

    Liu C L, Han Y H, Wang Y, Peng G, Wu B J, Gao C X 2011 Diam. Relat. Mater. 20 250

    [22]

    Wu B J, Han Y H, Peng G, Liu C L, Wang Y, Gao C X 2010 Acta Phys.Sin. 59 4265(in Chinese)[吴宝嘉、韩永昊、彭 刚、刘才龙、王 月、高春晓 2010 物理学报 59 4265]

    [23]
    [24]
    [25]

    Huang X W, Gao C X, Li M, He C Y, Hao A M, Zhang D M, Yu C L, Wang Y, Cui X Y, Zou G T 2007 J. Appl. Phys. 101 064904

    [26]

    Huang X W, Gao C X, Zhang D M, Li M, He C Y, Hao A M, Yu C L, Liu C L, Wang Y, Zou G T 2007 Appl. Phys. Lett. 90 204102

    [27]
    [28]
    [29]

    Huang X W, Gao C X, Han Y H, Li M, He C Y, Hao A M, Zhang D M, Yu C L, Zou G T 2007 Appl. Phys. Lett. 90 242102

    [30]
    [31]

    Koon D W 1989 Rev. Sci. Instrum. 60 271

    [32]
    [33]

    Van der Pauw L J 1958 Philips Tech.Rev. 20 220

    [34]

    Merkel S, Hemley R J, Mao H K 1999 Appl. Phys. Lett. 74 656

    [35]
  • [1]

    Grzybowski T A, Ruoff A L 1984 Phys. Rev. Lett. 53 489

    [2]
    [3]

    Sakai N, Kajiwara T,Tsuji K, Minomura S 1982 Rev.Sci.Instrum. 53 4992502

    [4]
    [5]

    Weir S T, Akella J, Aracne-Ruddle C, Vohra Y K, Catledge S A 2000 Appl. Phys. Lett. 77 3400

    [6]

    Petersen C L, Grey F, Shiraki I, Hasegawa S H 2000 Appl. Phys. Lett. 77 3782

    [7]
    [8]

    Patterson J R, Catledge S A, Vohra Y K, Akella J, Weir S T 2000 Phys. Rev. Lett. 85 5364

    [9]
    [10]
    [11]

    Velisavljevic N, MacMinn K M, Vohra Y K, Weir S T 2004 Appl. Phys. Lett. 84 927

    [12]

    Han Y H, Gao C X, Ma Y Z, Liu H W, Pan Y W, Luo J F, Li M, He C Y, Huang X W, Zou G T, Li Y, Li X, Liu J 2005 Appl. Phys. Lett. 86 064104

    [13]
    [14]

    Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912

    [15]
    [16]
    [17]

    Li M, Gao C X, Ma Y Z, Wang D, Li Y, Liu J 2007 Appl. Phys. Lett. 90 113507

    [18]

    He C Y, Gao C X, Ma Y Z, Li M, Hao A M, Huang X W, Liu B G, Zhang D M, Yu C L, Zou G T, Li Y C, Li H, Li X D, Liu J 2007 Appl. Phys. Lett. 91 092124

    [19]
    [20]
    [21]

    Liu C L, Han Y H, Wang Y, Peng G, Wu B J, Gao C X 2011 Diam. Relat. Mater. 20 250

    [22]

    Wu B J, Han Y H, Peng G, Liu C L, Wang Y, Gao C X 2010 Acta Phys.Sin. 59 4265(in Chinese)[吴宝嘉、韩永昊、彭 刚、刘才龙、王 月、高春晓 2010 物理学报 59 4265]

    [23]
    [24]
    [25]

    Huang X W, Gao C X, Li M, He C Y, Hao A M, Zhang D M, Yu C L, Wang Y, Cui X Y, Zou G T 2007 J. Appl. Phys. 101 064904

    [26]

    Huang X W, Gao C X, Zhang D M, Li M, He C Y, Hao A M, Yu C L, Liu C L, Wang Y, Zou G T 2007 Appl. Phys. Lett. 90 204102

    [27]
    [28]
    [29]

    Huang X W, Gao C X, Han Y H, Li M, He C Y, Hao A M, Zhang D M, Yu C L, Zou G T 2007 Appl. Phys. Lett. 90 242102

    [30]
    [31]

    Koon D W 1989 Rev. Sci. Instrum. 60 271

    [32]
    [33]

    Van der Pauw L J 1958 Philips Tech.Rev. 20 220

    [34]

    Merkel S, Hemley R J, Mao H K 1999 Appl. Phys. Lett. 74 656

    [35]
计量
  • 文章访问数:  6686
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-23
  • 修回日期:  2011-06-21
  • 刊出日期:  2011-06-05

/

返回文章
返回