搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低温超导量子干涉器件的脑听觉激励磁场探测

张树林 刘扬波 曾佳 王永良 孔祥燕 谢晓明

引用本文:
Citation:

基于低温超导量子干涉器件的脑听觉激励磁场探测

张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明

Detection of brain auditory evoked magnetic field based on low-Tc superconducting quantum interface device

Zhang Shu-Lin, Liu Yang-Bo, Zeng Jia, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming
PDF
导出引用
  • 本文利用磁屏蔽室和二阶轴向梯度计抑制环境磁场噪声, 建立了单通道脑磁探测系统, 并对不用声音频率下脑听觉激励磁场N100m响应进行了初步探测.结果显示, 1000 Hz音频和100 ms持续声音激励下, N100m峰值的典型强度约为0.4 pT.在低的声音频率激励下, N100m峰出现延时, 100 Hz 和1000 Hz之间的延时差别达到25 ms.相比于1 kHz特定频率的声音激励, 14 kHz 随机变频下的N100m峰幅度增强, 出现了数毫秒的延时.本研究为下一步利用软件梯度计进行多通道脑磁系统和听觉机理研究奠定了一定的基础.
    Superconducting quantum interface devices (SQUID) is widely used in human brain signal detection. As one of the applications of magnetoencephalography (MEG) system, the detection of the auditory evoked response is useful for the development of MEG system and the research into auditory mechanism of human brain. Generally, the auditory evoked response includes three peaks which are P50m, N100m and P200m. We develop a single-channel MEG system in a magnetically shielded room based on the superconducting quantum interface device (SQUID) and second-order axial gradiometer. The responses of the main peak N100m under different tone frequencies are preliminarily studied by using our system. The typical evoked response of N100m to 1 kHz pure tone and 100 ms duration is measured to be 0.4 pT. Under the tone stimulus at low frequency, the delay of the peak N100m to the tone onset is 125 ms at 100 Hz, which is longer than the typical value of 100 ms. In comparison with the response to 1 kHz pure tone stimulus, the amplitude of the evoked response in a random frequency range from 1 kHz to 4 kHz is stronger and the delay is several milliseconds. This work lays the foundation of the studies of the auditory mechanism and multichannel MEG system by using software gradiometers.
    • 基金项目: 国家高技术研究发展计划(批准号:2008AA02Z308)和上海市科学技术委员会(批准号:08JC1421800)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA02Z308) and the Science and Technology Commission of Shanghai Municipality (Grant No. 08JC1421800).
    [1]

    Pizzella V, Penna S D, Gratta C D, Romani G L 2001 Supercond. Sci. Technol. 14 R79

    [2]

    Sternickel K, Braginski A I 2006 Supercond. Sci. Technol. 19 S160

    [3]

    Rampp S, Stefan 2007 Expert Rev. Med. Devices 4 335

    [4]

    Knowlton R C 2003 Curr. Neurol. Neurosci. Rep. 3 341

    [5]

    Stufflebeam S M, Tanaka N, Ahlfors S P 2009 Hum. Brain Mapp. 30 1813

    [6]

    Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1999 Rev. Mod. Phys. 65 413

    [7]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport 14 1425

    [8]

    Richard E F, Roozbeh R, Andrew C P 2009 Phys. Life. Rev. 6 1

    [9]

    Rieger J W, Braun C, Bülthoff H H, Gegenfurtner K R 2005 J. Vision 5 275

    [10]

    Lounasmma O V, Seppä H 2004 J. Low Temp. Phys. 135 295

    [11]

    Brake H J M, Flokstra J, Jaszczuk W, Stammis R, Ancum G K, Martinez A, Rogalla H 1991 Clin. Phys. Physiol. Meas. 12 45

    [12]

    Lee Y H, Yu K K, Kwon H, Kim J M, Kim K, Park Y K, Yang H C, Chen K L, Yang S Y, Horng H E 2009 Supercond. Sci. Technol. 22 045023

    [13]

    Andrä W, Nowak H 2007 Magnetism in Medicine. 2nd ed. (Weinheim: Wiley-VCH) p117

    [14]

    Hamada T 2006 Biol. Cybem. 94 143

    [15]

    Gage N M, Siegel B, Callen M, Roberts T P L 2003 Neuroreport, 14 2047

    [16]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport, 14 1425

    [17]

    Blumenfeld L D, Clementz B A 2001 Clin. Neurophysiol. 112 1650

    [18]

    Hirano Y, Hirano S, Maekawa T, Obayashi C, Oribe N, Monji A, Kasai K, Kanba S, Onitsuka T 2010 Schizophr. Res. 117 61

    [19]

    Roberts T P L, Khan S Y, Rey M, Monroe J F, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt G L, Zarnow D M, Levy S E, Edgar J C 2010 Autism Res. 3 8

    [20]

    Li Z, Liu D T, Tian Y, Chen G H, Zhang L H, Yang Q S, Feng J 2007 Chin. Phys. 16 2913

    [21]

    Wang Q, Ma P, Lu H, Tang X Z, Hua N, Tang F K 2009 Chin. Phys. B 18 5566

    [22]

    Zhang Y M, Zhang N, Han Z Z,Wang Y L,Wang C X, Chen H Y, Wang Y J, Zhang X H 2010 Neurol. Res. 32 625

    [23]

    Zhang Y T, Geng Z J, Zhang Q, Li W, Zhang J 2006 Chin. Med. J. 119 1548

    [24]

    Zhang Z Q, Zhang J, Zhao H Y, Zhang P, Lin T, Zeng Y J 2010 Neurosurg. Quart. 20 268

    [25]

    Zhang S L,Wang Y L,Wang HW, Jiang S Q, Xie XM2009 Phys. Med. Biol. 54 4793

  • [1]

    Pizzella V, Penna S D, Gratta C D, Romani G L 2001 Supercond. Sci. Technol. 14 R79

    [2]

    Sternickel K, Braginski A I 2006 Supercond. Sci. Technol. 19 S160

    [3]

    Rampp S, Stefan 2007 Expert Rev. Med. Devices 4 335

    [4]

    Knowlton R C 2003 Curr. Neurol. Neurosci. Rep. 3 341

    [5]

    Stufflebeam S M, Tanaka N, Ahlfors S P 2009 Hum. Brain Mapp. 30 1813

    [6]

    Hämäläinen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa O V 1999 Rev. Mod. Phys. 65 413

    [7]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport 14 1425

    [8]

    Richard E F, Roozbeh R, Andrew C P 2009 Phys. Life. Rev. 6 1

    [9]

    Rieger J W, Braun C, Bülthoff H H, Gegenfurtner K R 2005 J. Vision 5 275

    [10]

    Lounasmma O V, Seppä H 2004 J. Low Temp. Phys. 135 295

    [11]

    Brake H J M, Flokstra J, Jaszczuk W, Stammis R, Ancum G K, Martinez A, Rogalla H 1991 Clin. Phys. Physiol. Meas. 12 45

    [12]

    Lee Y H, Yu K K, Kwon H, Kim J M, Kim K, Park Y K, Yang H C, Chen K L, Yang S Y, Horng H E 2009 Supercond. Sci. Technol. 22 045023

    [13]

    Andrä W, Nowak H 2007 Magnetism in Medicine. 2nd ed. (Weinheim: Wiley-VCH) p117

    [14]

    Hamada T 2006 Biol. Cybem. 94 143

    [15]

    Gage N M, Siegel B, Callen M, Roberts T P L 2003 Neuroreport, 14 2047

    [16]

    Finney E M, Clementz B A, Hickok G, Dobkins K R 2003 Neuroreport, 14 1425

    [17]

    Blumenfeld L D, Clementz B A 2001 Clin. Neurophysiol. 112 1650

    [18]

    Hirano Y, Hirano S, Maekawa T, Obayashi C, Oribe N, Monji A, Kasai K, Kanba S, Onitsuka T 2010 Schizophr. Res. 117 61

    [19]

    Roberts T P L, Khan S Y, Rey M, Monroe J F, Cannon K, Blaskey L, Woldoff S, Qasmieh S, Gandal M, Schmidt G L, Zarnow D M, Levy S E, Edgar J C 2010 Autism Res. 3 8

    [20]

    Li Z, Liu D T, Tian Y, Chen G H, Zhang L H, Yang Q S, Feng J 2007 Chin. Phys. 16 2913

    [21]

    Wang Q, Ma P, Lu H, Tang X Z, Hua N, Tang F K 2009 Chin. Phys. B 18 5566

    [22]

    Zhang Y M, Zhang N, Han Z Z,Wang Y L,Wang C X, Chen H Y, Wang Y J, Zhang X H 2010 Neurol. Res. 32 625

    [23]

    Zhang Y T, Geng Z J, Zhang Q, Li W, Zhang J 2006 Chin. Med. J. 119 1548

    [24]

    Zhang Z Q, Zhang J, Zhao H Y, Zhang P, Lin T, Zeng Y J 2010 Neurosurg. Quart. 20 268

    [25]

    Zhang S L,Wang Y L,Wang HW, Jiang S Q, Xie XM2009 Phys. Med. Biol. 54 4793

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] 何安, 薛存. 缺陷调控临界温度梯度超导膜的磁通整流反转效应. 物理学报, 2022, 71(2): 027401. doi: 10.7498/aps.71.20211157
    [3] 徐达, 钟青, 曹文会, 王雪深, 王仕建, 李劲劲, 刘建设, 陈炜. 二阶梯度交叉耦合超导量子干涉仪电流传感器研制. 物理学报, 2021, 70(12): 128501. doi: 10.7498/aps.70.20201816
    [4] 梁恬恬, 张国峰, 伍文涛, 倪志, 王永良, 应利良, 伍俊, 荣亮亮, 彭炜, 高波. 串联超导量子干涉器件阵列制备与测试分析. 物理学报, 2021, 70(17): 178501. doi: 10.7498/aps.70.20210467
    [5] 郑东宁. 超导量子干涉器件. 物理学报, 2021, 70(1): 018502. doi: 10.7498/aps.70.20202131
    [6] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, 2019, 68(13): 138501. doi: 10.7498/aps.68.20190483
    [7] 张永升, 邱阳, 张朝祥, 李华, 张树林, 王永良, 徐小峰, 丁红胜, 孔祥燕. 多通道心磁系统标定方法研究. 物理学报, 2014, 63(22): 228501. doi: 10.7498/aps.63.228501
    [8] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析. 物理学报, 2013, 62(11): 118704. doi: 10.7498/aps.62.118704
    [9] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, 2013, 62(18): 188501. doi: 10.7498/aps.62.188501
    [10] 王杨婧, 谢拥军, 雷振亚. 用于射频超导量子干涉器的新型单CSRR磁通聚焦器和谐振器. 物理学报, 2012, 61(9): 094210. doi: 10.7498/aps.61.094210
    [11] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [12] 朱红毅, 沈建其, 李 军. 一种新的求解脑磁逆问题的搜索方法. 物理学报, 2004, 53(3): 947-951. doi: 10.7498/aps.53.947
    [13] 郎佩琳, 陈 珂, 郑东宁, 张鸣剑, 漆汉宏, 赵忠贤. 高阶高温超导量子干涉器件平面式梯度计的设计. 物理学报, 2004, 53(10): 3530-3534. doi: 10.7498/aps.53.3530
    [14] 朱红毅, 李军, 罗斌. 真实头模型中的多电流偶极子脑磁源定位. 物理学报, 2002, 51(10): 2393-2398. doi: 10.7498/aps.51.2393
    [15] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响. 物理学报, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [16] 马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东. 利用单通道高温超导磁梯度计获取心磁地图. 物理学报, 2002, 51(2): 224-227. doi: 10.7498/aps.51.224
    [17] 丁红胜, 韩冰, 陈赓华, 张利华, 杨乾声. 一种抑制市电对高温SQUID干扰的新方法. 物理学报, 2002, 51(2): 220-223. doi: 10.7498/aps.51.220
    [18] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计. 物理学报, 2000, 49(10): 2051-2054. doi: 10.7498/aps.49.2051
    [19] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相. 物理学报, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [20] G.O.斯屈克尔. 磁调制光电倍加管的超光度计. 物理学报, 1958, 14(1): 23-36. doi: 10.7498/aps.14.23
计量
  • 文章访问数:  5558
  • PDF下载量:  472
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-22
  • 修回日期:  2011-05-06
  • 刊出日期:  2012-01-05

/

返回文章
返回