搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钇覆盖Si@Al12团簇的贮氢性能

黄海深 王小满 赵冬秋 伍良福 黄晓伟 李蕴才

引用本文:
Citation:

钇覆盖Si@Al12团簇的贮氢性能

黄海深, 王小满, 赵冬秋, 伍良福, 黄晓伟, 李蕴才

Hydrogen storage capacity of Y-coated Si@Al12 clusters

Huang Hai-Shen, Wang Xiao-Man, Zhao Dong-Qiu, Wu Liang-Fu, Huang Xiao-Wei, Li Yun-Cai
PDF
导出引用
  • 利用密度泛函理论系统地研究了YmSi@Al12 (m=13)团簇及其贮氢性质. 结果表明, 在所研究的尺度范围内, 钇原子未在Si@Al12团簇上团聚; 每个钇原子按18电子规则吸附氢分子, 其中Y3Si@Al12团簇可以吸附16个完整氢分子, 贮氢质量分数为5.0 %, 平均吸附能处于0.3240.527 eV之间, 较为理想的吸附能说明在室温条件下吸氢和脱氢是可行的.
    The adsorption property of hydrogen molecules on YmSi@Al12 (m=13) cluster is investigated using the density functional theory. The results show that yttrium atoms do not suffer from clustering on the Si@Al12 cluster. The 18-electron rule can be used to design these systems, and Si@Al12 cluster coated with three yttrium atoms can adsorb 16 H2 molecules with a gravimetric density of up to 5.0 wt%. The calculated adsorption energy of 0.324-0.527 eV/H2 molecule is suited for reversible hydrogen storage in near-ambient conditions.
    • 基金项目: 国家自然科学基金(批准号: 10904031)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10904031).
    [1]

    Wong-Foy A G, Matzger A J, Yaghi O M 2006 J. Am. Chem. Soc. 128 3494

    [2]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422

    [3]

    Meng S, Kaxiras E, Zhang Z 2007 Nano Lett. 7 663

    [4]

    Kim Y H, Zhao Y, Williamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [5]

    Wang L, Zhao J J, Zhou Z, Zhang S B, Chen Z F 2009 J. Comput. Chem. 30 2509

    [6]

    Lu Q L, Luo Q Q, Jalbout A F, Wan J G, Wang G H 2009 Eur. Phys. J. D 51 219

    [7]

    Kochnev V K, Charkin O P, Klimenko N M 2009 Russ. J. Inorg. Chem. 54 1114

    [8]

    Lu Q L, Jalbout A F, Luo Q Q,Wan J G,Wang G H 2008 J. Chem. Phys. 128 224707

    [9]

    Goldberg A, Yarovsky I 2007 Phys. Rev. B 75 195403

    [10]

    Li S, Gong X 2006 Phys. Rev. B 74 045432

    [11]

    Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A 2006 J. Phys. Chem. A 110 12073

    [12]

    Chen G, Kawazoe Y 2007 J. Chem. Phys. 126 014703

    [13]

    Kumar V, Bhattacharjee S, Kawazoe Y 2000 Phys. Rev. B 61 8541

    [14]

    Lu Q L, Wan J G 2010 J. Chem. Phys. 132 224308

    [15]

    Li F, Zhao J J, Chen Z F 2010 Nanotechnology 21 134006

    [16]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 物理学报 58 8077]

    [17]

    Zhao Y, Kim Y H, Dillon A, Heben M, Zhang S 2005 Phys. Rev. Lett. 94 155504

    [18]

    Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 物理学报 59 4178]

    [19]

    Li M, Li Y, Zhou Z, Shen P, Chen Z 2009 Nano Lett. 9 1944

    [20]

    Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 物理学报 59 1991]

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 J. Phys. Chem. C 111 17977

    [22]

    Zhang H, Xiao MZ, Zhang G Y, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [25]

    Liang J J 2003 Appl. Phys. A 80 173

    [26]

    Kiran B, Kandalam A K, Jena P 2006 J. Chem. Phys. 124 224703

    [27]

    Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B 2008 Nano Lett. 8 157

    [28]

    Gao Y, Zeng X C 2007 J. Phys. Condens. Matter 19 386220

    [29]

    Frisch M J et al Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [30]

    Simon S, Duran M, Dannenberg J J 1996 J. Chem. Phys. 105 11024

    [31]

    Kubas G J 2001 J. Organomet. Chem. 635 37

    [32]

    Yuan H K, Chen H, Kuang A L, Ahmed A S, Xiong Z H 2007 Phys. Rev. B 75 174412

    [33]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582

  • [1]

    Wong-Foy A G, Matzger A J, Yaghi O M 2006 J. Am. Chem. Soc. 128 3494

    [2]

    Han S S, Goddard W A 2007 J. Am. Chem. Soc. 129 8422

    [3]

    Meng S, Kaxiras E, Zhang Z 2007 Nano Lett. 7 663

    [4]

    Kim Y H, Zhao Y, Williamson A, Heben M J, Zhang S B 2006 Phys. Rev. Lett. 96 016102

    [5]

    Wang L, Zhao J J, Zhou Z, Zhang S B, Chen Z F 2009 J. Comput. Chem. 30 2509

    [6]

    Lu Q L, Luo Q Q, Jalbout A F, Wan J G, Wang G H 2009 Eur. Phys. J. D 51 219

    [7]

    Kochnev V K, Charkin O P, Klimenko N M 2009 Russ. J. Inorg. Chem. 54 1114

    [8]

    Lu Q L, Jalbout A F, Luo Q Q,Wan J G,Wang G H 2008 J. Chem. Phys. 128 224707

    [9]

    Goldberg A, Yarovsky I 2007 Phys. Rev. B 75 195403

    [10]

    Li S, Gong X 2006 Phys. Rev. B 74 045432

    [11]

    Akutsu M, Koyasu K, Atobe J, Hosoya N, Miyajima K, Mitsui M, Nakajima A 2006 J. Phys. Chem. A 110 12073

    [12]

    Chen G, Kawazoe Y 2007 J. Chem. Phys. 126 014703

    [13]

    Kumar V, Bhattacharjee S, Kawazoe Y 2000 Phys. Rev. B 61 8541

    [14]

    Lu Q L, Wan J G 2010 J. Chem. Phys. 132 224308

    [15]

    Li F, Zhao J J, Chen Z F 2010 Nanotechnology 21 134006

    [16]

    Zhang H, Qi K Z, Zhang G Y, Wu D, Zhu S L 2009 Acta Phys. Sin. 58 8077 (in Chinese) [张辉, 戚克振, 张国英, 吴迪, 朱圣龙 2009 物理学报 58 8077]

    [17]

    Zhao Y, Kim Y H, Dillon A, Heben M, Zhang S 2005 Phys. Rev. Lett. 94 155504

    [18]

    Ye J Y, Liu Y L, Wang J L, He Y 2010 Acta Phys. Sin. 59 4178 (in Chinese) [叶佳宇, 刘亚丽, 王靖林, 何垚 2010 物理学报 59 4178]

    [19]

    Li M, Li Y, Zhou Z, Shen P, Chen Z 2009 Nano Lett. 9 1944

    [20]

    Yu D L, Chen Y H, Cao Y J, Zhang C R 2010 Acta Phys. Sin. 59 1991 (in Chinese) [于大龙, 陈玉红, 曹一杰, 张材荣 2010 物理学报 59 1991]

    [21]

    Krasnov P O, Ding F, Singh A K, Yakobson B I 2007 J. Phys. Chem. C 111 17977

    [22]

    Zhang H, Xiao MZ, Zhang G Y, Lu G X, Zhu S L 2011 Acta Phys. Sin. 60 026103 (in Chinese) [张辉, 肖明珠, 张国英, 路广霞, 朱圣龙 2011 物理学报 60 026103]

    [23]

    Delley B 2000 J. Chem. Phys. 113 7756

    [24]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [25]

    Liang J J 2003 Appl. Phys. A 80 173

    [26]

    Kiran B, Kandalam A K, Jena P 2006 J. Chem. Phys. 124 224703

    [27]

    Zhao Y, Lusk M T, Dillon A C, Heben M J, Zhang S B 2008 Nano Lett. 8 157

    [28]

    Gao Y, Zeng X C 2007 J. Phys. Condens. Matter 19 386220

    [29]

    Frisch M J et al Gaussian 03 (Gaussian, Inc., Wallingford CT, 2004)

    [30]

    Simon S, Duran M, Dannenberg J J 1996 J. Chem. Phys. 105 11024

    [31]

    Kubas G J 2001 J. Organomet. Chem. 635 37

    [32]

    Yuan H K, Chen H, Kuang A L, Ahmed A S, Xiong Z H 2007 Phys. Rev. B 75 174412

    [33]

    Sun Q, Wang Q, Jena P, Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [3] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [4] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [5] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, 2015, 64(23): 238102. doi: 10.7498/aps.64.238102
    [6] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰. 锂原子修饰B6团簇的储氢性能研究. 物理学报, 2013, 62(5): 053103. doi: 10.7498/aps.62.053103
    [10] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, 2011, 60(7): 073103. doi: 10.7498/aps.60.073103
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [15] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  6726
  • PDF下载量:  908
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-28
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回