搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be原子在Be基底上的沉积过程研究

黄晓玉 程新路 徐嘉靖 吴卫东

引用本文:
Citation:

Be原子在Be基底上的沉积过程研究

黄晓玉, 程新路, 徐嘉靖, 吴卫东

Atomistic study of deposition process of Be thin film on Be substrate

Huang Xiao-Yu, Cheng Xin-Lu, Xu Jia-Jing, Wu Wei-Dong
PDF
导出引用
  • 利用分子动力学方法模拟了Be原子在Be基底上的沉积过程. 模拟了沉积粒子不同入射动能条件下, 沉积薄膜表面形态的差异. 在一定能量范围内, 增加粒子入射动能可以减小薄膜的表面粗糙度. 但是, 过高的入射动能, 不利于减小薄膜表面粗糙度. 通过沉积薄膜中原子配位数以及单个原子势能沿薄膜厚度的分布, 分析沉积原子入射动能对于薄膜及表面结构的影响. 沉积动能较大时, 薄膜的密度较大; 单个原子势能沿薄膜厚度分布较为连续; 同时薄膜中原子应力沿薄膜厚度分布较为连续. 最后, 分析了沉积粒子能量转化的过程、粒子初始动能对基底表面附近粒子局部动能增加的影响.
    The deposition process for Be atoms on Be substrate is studied using molecular dynamic simulations. The morphologies of the deposited films are distinctly different under different incident energies. In a specified range, the surface roughness of the film decreases with the increase of the incident energy. However, the over-high incident energy is unfavourable for reducing the surface roughness of the film. The distributions of the coordination numbers and potential energy of the single atom are used to analyze the film structure under different incident energies. With the bigger incident energy the density of the film is bigger and the distribution of the potential energy of the single atom is more continuous. At the same time, the distribution of the atomic stress is more continuous. Finally, the energy conversion process of the single atom is given, and the influence of the initial incident energy on the locally accelerated energy near the substrate is analyzed.
    [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 物理学报 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. ReV. Lett. 55 604

    [3]

    Liang Dong, Smith R W 1996 J. Appl. Phys. 80 5682

    [4]

    Hong Z H, Hwang S F, Fang T H 2007 Computational Materials Science 41 70

    [5]

    Zhang L, Feng J Y 2005 Nuclear Instruments and Methods in Physics Research B 234 487

    [6]

    Lee S, Chuang Y C 2007 Jpn. J. Appl. Phys. 46 6309

    [7]

    Chung C Y, Chung Y C 2006 Materials Letters 60 1063

    [8]

    Kim S P, Chung Y C 2003 J. Appl. Phys. 93 8564

    [9]

    Lee S G, Chung Y C 2007 Applied Surface Science 253 8896

    [10]

    Albert M, Thoma D J 2004 J. Appl. Phys. 95 2436

    [11]

    Ganchenkoval M G, Borodin V A 2007 Physical Review B 75 054108

    [12]

    Meyerhoff R W, Smith J F 1962 J. Appl. Phys. 33 219

    [13]

    Nadal M H, Bourgeois L 2010 J. Appl. Phys. 108 033512

    [14]

    Benedict L X, Ogitsu T 2009 Physical ReView B 79 064106

    [15]

    Olijnyk H, Jephcoat A P 2000 J. Phys.: Condens. Matter 12 8913

    [16]

    Hite D A, Tang S J, 2003 Chemical Physics Letters 367 129

    [17]

    Baskes M I, Johnson R A, 1994 Modelling Simul. Mater Sci. Eng 2 147

    [18]

    Daw M S, Baskes M I, 1984 Phys ReV. B 29 6443

    [19]

    Daw M S, Foiles S M, Baskes M I, 1993 Mater. Sci. Rep. 9 251

    [20]

    Lee S G, Chung Y C, 2006 J. Appl. Phys. 100 074905

    [21]

    Wen Y H, Zhu Y Z, 2003 Advances in Mechanics 33 65( in Chinese) [文玉华, 朱玉曾 2003 力学进展 33 65]

    [22]

    Hong Z H, Hwang S F, Fang T H, 2010 Computational Materials Science 48 520

    [23]

    Liang H Y 2001 Ph. D. Dissertation (Hefei: China University of Sci and Tech) (in Chinese) [梁海弋 2001 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Kim B H, Chung Y C 2009 J. Appl. Phys. 106 044304

  • [1]

    Zhang Q Y, Ma T C, Pan Z Y, Tang J Y 2000 Acta Phys. Sin. 49 1124 (in Chinese) [张庆瑜, 马腾才, 潘正英, 汤家镛 2000 物理学报 49 1124]

    [2]

    Schneider M, Rahman A, Schuller I K 1985 Phys. ReV. Lett. 55 604

    [3]

    Liang Dong, Smith R W 1996 J. Appl. Phys. 80 5682

    [4]

    Hong Z H, Hwang S F, Fang T H 2007 Computational Materials Science 41 70

    [5]

    Zhang L, Feng J Y 2005 Nuclear Instruments and Methods in Physics Research B 234 487

    [6]

    Lee S, Chuang Y C 2007 Jpn. J. Appl. Phys. 46 6309

    [7]

    Chung C Y, Chung Y C 2006 Materials Letters 60 1063

    [8]

    Kim S P, Chung Y C 2003 J. Appl. Phys. 93 8564

    [9]

    Lee S G, Chung Y C 2007 Applied Surface Science 253 8896

    [10]

    Albert M, Thoma D J 2004 J. Appl. Phys. 95 2436

    [11]

    Ganchenkoval M G, Borodin V A 2007 Physical Review B 75 054108

    [12]

    Meyerhoff R W, Smith J F 1962 J. Appl. Phys. 33 219

    [13]

    Nadal M H, Bourgeois L 2010 J. Appl. Phys. 108 033512

    [14]

    Benedict L X, Ogitsu T 2009 Physical ReView B 79 064106

    [15]

    Olijnyk H, Jephcoat A P 2000 J. Phys.: Condens. Matter 12 8913

    [16]

    Hite D A, Tang S J, 2003 Chemical Physics Letters 367 129

    [17]

    Baskes M I, Johnson R A, 1994 Modelling Simul. Mater Sci. Eng 2 147

    [18]

    Daw M S, Baskes M I, 1984 Phys ReV. B 29 6443

    [19]

    Daw M S, Foiles S M, Baskes M I, 1993 Mater. Sci. Rep. 9 251

    [20]

    Lee S G, Chung Y C, 2006 J. Appl. Phys. 100 074905

    [21]

    Wen Y H, Zhu Y Z, 2003 Advances in Mechanics 33 65( in Chinese) [文玉华, 朱玉曾 2003 力学进展 33 65]

    [22]

    Hong Z H, Hwang S F, Fang T H, 2010 Computational Materials Science 48 520

    [23]

    Liang H Y 2001 Ph. D. Dissertation (Hefei: China University of Sci and Tech) (in Chinese) [梁海弋 2001 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Kim B H, Chung Y C 2009 J. Appl. Phys. 106 044304

计量
  • 文章访问数:  6441
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-29
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

/

返回文章
返回