搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变Ge/Si1-xGex 价带色散模型

戴显英 杨程 宋建军 张鹤鸣 郝跃 郑若川

引用本文:
Citation:

应变Ge/Si1-xGex 价带色散模型

戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川

The model of valence-band dispersion for strained Ge/Si1-xGex

Dai Xian-Ying, Yang Cheng, Song Jian-Jun, Zhang He-Ming, Hao Yue, Zheng Ruo-Chuan
PDF
导出引用
  • 基于kp微扰理论, 通过引入应变哈密顿量作为微扰, 建立了双轴应变Ge/Si1-xGex价带色散关系模型. 模型适于任意晶向弛豫Si1-xGex虚衬底上的应变Ge价带结构, 通过该模型可获得任意k方向应变Ge的价带结构和空穴有效质量. 模型的Matlab模拟结果显示, 应变Ge/Si1-xGex价带带边空穴有效质量随Ge组分的增加而减小, 其各向异性比弛豫Ge更加显著. 本文研究成果对Si基应变Ge MOS器件及集成电路的沟道应力与晶向的设计有参考价值.
    Based on the kp theory, the valence-band dispersion model for biaxial strained Ge/Si1-xGex is derived by taking strained Hamiltonian perturbation into account. The model can be used to calculate the valence band structure and hole effective mass along arbitrarily k wavevector direction in strained Ge grown on arbitrarily oriented relaxed Si1-xGex virtual substrate. The MATLAB simulation results of the model show that by comparison with relaxed Ge, the more anisotropy of the hole effective mass occurs in strained Si1-xGex and the hole effective mass of the top valence band decreases with the increase of Ge fraction. The results can supply valuable references to the conduction channel design related to stress and orientation in the Si-based strained Ge MOS devices and integrated circuits.
    • 基金项目: 国家重点基础研究发展计划(批准号:61398)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 61398).
    [1]

    Tu H L(Translator) 2010 Gemanium-based Technologies from Materials to Devices (Beijing: Metallurgical Industry Press) p326 (in Chinese) [C.克莱, E.西蒙著,屠海令等译 2010 半导体锗材料与器件 (北京:冶金工业出版社) 第326页]

    [2]

    Nayak D K, Woo J C S, Park J S, Wang K L, Macwilliams K P 1991 Electron Device Letters 15 (1-4):19

    [3]

    Wei G (Translator) 2010 China Integrated Circult 4 (131): 17 [为国(译) 2010 中国集成电路 4 (131):17]

    [4]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827 [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2007 中国物理 16 3827]

    [5]

    Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics 52 1437

    [6]

    Lee M L, Leitz C W, Cheng Z, Pitera A J, Langdo T, Currie M T, Taraschi G, Fitzgerald E A, Antoniadis D A 2001 Appl. Phys. Lett. 79 3344

    [7]

    Shang H, Chu J Q, Wang X, Mooney P M, Lee K, Ott J, Rim K, Chan K, Guarini K, Ieong M 2004 2004 Symposium on VLSI Technology Honolulu June 15-17, 2004 p204

    [8]

    Song J J,Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 2008 57 7228]

    [9]

    Sang Kook Chun, Kang L Wang 1992 IEEE Transaction on Electron Device 39 2153

    [10]

    Peopel R 1986 Journal of Quantum Electronics 22 1696

    [11]

    Smirnov S, Kosina H 2004 Solid-State Electronics 48 1325

    [12]

    Li M F 1998 Semiconductor Physics (Beijing:Science Press) p64(in Chinese) [李名复 1998 半导体物理学 (北京:科学出版社) 第64页]

    [13]

    Yu J Z (Translator) 2002 Properties of Strained and Relaxed Silicon Germanium (Beijing: National Defence Industrial Press) p73 (in Chinese) [余金中(译) 2002 硅锗的性质 (北京:国防工业出版社) 第73页]

    [14]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Sixth Ed.) (Beijing: Publishing House Of Electronics Industry) p18 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学(第6版) (北京: 电子工业出版社) 第18页]

  • [1]

    Tu H L(Translator) 2010 Gemanium-based Technologies from Materials to Devices (Beijing: Metallurgical Industry Press) p326 (in Chinese) [C.克莱, E.西蒙著,屠海令等译 2010 半导体锗材料与器件 (北京:冶金工业出版社) 第326页]

    [2]

    Nayak D K, Woo J C S, Park J S, Wang K L, Macwilliams K P 1991 Electron Device Letters 15 (1-4):19

    [3]

    Wei G (Translator) 2010 China Integrated Circult 4 (131): 17 [为国(译) 2010 中国集成电路 4 (131):17]

    [4]

    Song J J, Zhang H M, Hu H Y, Dai X Y, Xuan R X 2007 Chin. Phys. 16 3827 [宋建军, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜 2007 中国物理 16 3827]

    [5]

    Phama A T, Jungemann C, Meinerzhagen B 2008 Solid-State Electronics 52 1437

    [6]

    Lee M L, Leitz C W, Cheng Z, Pitera A J, Langdo T, Currie M T, Taraschi G, Fitzgerald E A, Antoniadis D A 2001 Appl. Phys. Lett. 79 3344

    [7]

    Shang H, Chu J Q, Wang X, Mooney P M, Lee K, Ott J, Rim K, Chan K, Guarini K, Ieong M 2004 2004 Symposium on VLSI Technology Honolulu June 15-17, 2004 p204

    [8]

    Song J J,Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 2008 57 7228]

    [9]

    Sang Kook Chun, Kang L Wang 1992 IEEE Transaction on Electron Device 39 2153

    [10]

    Peopel R 1986 Journal of Quantum Electronics 22 1696

    [11]

    Smirnov S, Kosina H 2004 Solid-State Electronics 48 1325

    [12]

    Li M F 1998 Semiconductor Physics (Beijing:Science Press) p64(in Chinese) [李名复 1998 半导体物理学 (北京:科学出版社) 第64页]

    [13]

    Yu J Z (Translator) 2002 Properties of Strained and Relaxed Silicon Germanium (Beijing: National Defence Industrial Press) p73 (in Chinese) [余金中(译) 2002 硅锗的性质 (北京:国防工业出版社) 第73页]

    [14]

    Liu E K, Zhu B S, Luo J S 2003 Semiconductor Physics (Sixth Ed.) (Beijing: Publishing House Of Electronics Industry) p18 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2003 半导体物理学(第6版) (北京: 电子工业出版社) 第18页]

  • [1] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [2] 王健, 揣荣岩. p型多晶硅薄膜应变因子与掺杂浓度关系理论研究. 物理学报, 2017, 66(24): 247201. doi: 10.7498/aps.66.247201
    [3] 戴中华, 钱一辰, 谢耀平, 胡丽娟, 李晓娣, 马海涛. 非对称双轴张应变对锗能带的影响. 物理学报, 2017, 66(16): 167101. doi: 10.7498/aps.66.167101
    [4] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [5] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究. 物理学报, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [6] 黄诗浩, 李成, 陈城钊, 郑元宇, 赖虹凯, 陈松岩. N型掺杂应变Ge发光性质. 物理学报, 2012, 61(3): 036202. doi: 10.7498/aps.61.036202
    [7] 弭光宝, 李培杰, 黄旭, 曹春晓. 液态结构与性质关系Ⅲ剩余键理论模型. 物理学报, 2012, 61(18): 186106. doi: 10.7498/aps.61.186106
    [8] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型. 物理学报, 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [9] 马建立, 张鹤鸣, 宋建军, 王晓艳, 王冠宇, 徐小波. 单轴〈111〉应力硅价带结构计算. 物理学报, 2011, 60(8): 087101. doi: 10.7498/aps.60.087101
    [10] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 应变Si价带色散关系模型. 物理学报, 2008, 57(11): 7228-7232. doi: 10.7498/aps.57.7228
    [11] 董建文, 陈溢杭, 汪河洲. 含奇异材料的掺杂一维光子晶体色散关系和空间局域度理论. 物理学报, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [12] 王庆学. 异质结构的应变和应力分布模型研究. 物理学报, 2005, 54(8): 3757-3763. doi: 10.7498/aps.54.3757
    [13] 李宏年, 徐亚伯, 鲍世宁, 李海洋, 何丕模, 钱海杰, 刘凤琴, 易·奎热西. C60单晶价带色散的同步辐射光电子谱研究. 物理学报, 2000, 49(6): 1144-1147. doi: 10.7498/aps.49.1144
    [14] 阮航宇. (2+1)维NLBQ方程和KP方程的多dromion结构和相互作用的研究. 物理学报, 1999, 48(10): 1781-1792. doi: 10.7498/aps.48.1781
    [15] 柯三黄, 黄美纯, 王仁智. 不同晶面与应变状态下Si/Ge应变异质界面的价带能量不连续性. 物理学报, 1996, 45(1): 107-112. doi: 10.7498/aps.45.107
    [16] 柯三黄, 黄美纯, 王仁智. 应变层超晶格(InAs)n/(GaAs)n的电子结构与价带能量不连续性. 物理学报, 1995, 44(7): 1129-1136. doi: 10.7498/aps.44.1129
    [17] 柯三黄, 王仁智, 黄美纯. 应变层半导体超晶格价带边不连续性的第一原理研究. 物理学报, 1994, 43(1): 103-109. doi: 10.7498/aps.43.103
    [18] 柯三黄, 王仁智, 黄美纯. 应变层超晶格InAs/InP界面的平均键能行为与价带边不连续性. 物理学报, 1993, 42(9): 1510-1514. doi: 10.7498/aps.42.1510
    [19] 王仁智, 黄美纯. 异质结价带边不连续△Ev的理论计算. 物理学报, 1991, 40(10): 1683-1688. doi: 10.7498/aps.40.1683
    [20] 章扬忠. 等离子体重整化准线性理论中的渐近传播函数与色散关系. 物理学报, 1981, 30(4): 478-486. doi: 10.7498/aps.30.478
计量
  • 文章访问数:  5938
  • PDF下载量:  524
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-11
  • 修回日期:  2012-02-15
  • 刊出日期:  2012-07-05

/

返回文章
返回