搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平面超材料的Fano谐振可调谐研究

刘冉 史金辉 E. Plum V.A. Fedotov N.I. Zheludev

引用本文:
Citation:

基于平面超材料的Fano谐振可调谐研究

刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev

Tuning Fano resonances in a planar metamaterial

Liu Ran, Shi Jin-Hui, Plum Eric, Fedotov Vassili, Zheludev Nikolay
PDF
导出引用
  • 基于两段相同金属分裂环谐振器构成的单层结构, 从理论及实验方面研究了平面超材料的可调谐Fano谐振. 实验测量了平面超材料对TE和TM入射波的电磁响应, 利用电磁波的入射角度控制Fano谐振的强度, 实现了谐振的开关特性, 谐振频率红移可达到21%. 基于有限元法给出了平面超材料的场分布, 强的正常色散表明平面超材料的电磁响应可类比经典电磁诱导透明现象, 仿真与实验结果相符合. 对称结构超材料Fano谐振的开/关特性为超材料性能的可调谐控制提供了有效途径.
    We demonstrate the tuning of Fano resonances in a symmetric planar metamaterial both experimentally and theoretically, on the basis of a unit cell consisting of two identical split ring resonators. The electromagnetic responses of the planar metamaterial to incident TE and TM waves are measured. By controlling the excitation of the Fano-type trapped-mode resonance via the angle of incidence, the resonance can be switched on/off and the resonance is red-shifted by up to 21%. Based on the finite element method, the field distributions are presented and a very sharp normal phase dispersion renders the response of the structure a metamaterial analog of classical electromagnetically-induced transparency (EIT). The simulated results are in good agreement with the measured ones. The switching feature of the trapped mode resonance in symmetric metamaterial can provide an easy approach to tuning the performance of metamaterial.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11104043), 黑龙江省自然科学基金(批准号: LC201006), 中央高校基本科研业务费专项资金(批准号: HEUCF 20111113), 中国博士后基金(批准号: 2012M511651)和哈尔滨市青年科技创新人员专项基金(批准号: 2012RFLXG030)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104043), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LC201006), the Fundamental Research Funds for the Central Universities (Grant No. HEUCF20111113), the China Postdoctoral Science Foundation (Grant No. 2012M511651), and the Special Foundation for HarbinYoung Scientists (Grant No. 2012RFLXG030).
    [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Zheludev N I 2011 Opt. & Photonics News 22 30

    [3]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [4]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C 2010 Nat. Mater. 9 707

    [5]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [6]

    Fano U 1961 Phys. Rev. 124 1866

    [7]

    Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903

    [8]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [9]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [10]

    Chiam S Y, Singh R, Rockstuhl C, Lederer F, Zhang W L, Bettiol A A 2009 Phys. Rev. B 80 153103

    [11]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758

    [12]

    Papasimakis N, Zheludev N I 2009 Opt. & Photonics News 20 22

    [13]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [15]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [16]

    Nikolaenko A E, De Angelis F, Boden S A, Papasimakis N, Ashburn P, Di Fabrizio E, Zheludev N I 2010 Phys. Rev. Lett. 104 153902

    [17]

    Sámson Z L, MacDonald K F, De Angelis F, Gholipour B, Knight K, Huang C C, Di Fabrizio E, Hewak D W, Zheludev N I 2010 Appl. Phys. Lett. 96 143105

    [18]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Lett. 97 167401

    [19]

    Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I 2009 Opt. Express 17 8548

    [20]

    Tanaka K, Plum E, Ou J Y, Uchino T, Zheludev N I 2010 Phys. Rev. Lett. 105 227403

    [21]

    Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I 2010 Opt. Express 18 9015

    [22]

    Singh R, Al-Naib I A I, Koch M, Zhang W L 2011 Opt. Expres 19 6312

    [23]

    Xiao X, Wu J, Miyamaru F, Zhang M, Li S, Takeda M W, Wen W, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [24]

    Plum E, Tanaka K, Chen W T, Fedotov V A, Tsai D P, Zheludev N I 2011 J. Opt. 13 055102

    [25]

    Lu Y H, Rhee J Y, Jang W H, Lee Y P 2010 Opt. Express 18 20912

    [26]

    Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, and Giessen H 2006 Opt. Express 14 8827

    [27]

    Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y, Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese) [杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞 2009 物理学报 58 901]

  • [1]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [2]

    Zheludev N I 2011 Opt. & Photonics News 22 30

    [3]

    Yang Y M, Wang J F, Xia S, Bai P, Li Z, Wang J, Xu Z, Qu S B 2011 Chin. Phys. B 20 014101

    [4]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C 2010 Nat. Mater. 9 707

    [5]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [6]

    Fano U 1961 Phys. Rev. 124 1866

    [7]

    Papasimakis N, Fedotov V A, Zheludev N I, Prosvirnin S L 2008 Phys. Rev. Lett. 101 253903

    [8]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [9]

    Tassin P, Zhang L, Koschny T, Economou E N, Soukoulis C M 2009 Phys. Rev. Lett. 102 053901

    [10]

    Chiam S Y, Singh R, Rockstuhl C, Lederer F, Zhang W L, Bettiol A A 2009 Phys. Rev. B 80 153103

    [11]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758

    [12]

    Papasimakis N, Zheludev N I 2009 Opt. & Photonics News 20 22

    [13]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257

    [14]

    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H 2010 Nano Lett. 10 1103

    [15]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [16]

    Nikolaenko A E, De Angelis F, Boden S A, Papasimakis N, Ashburn P, Di Fabrizio E, Zheludev N I 2010 Phys. Rev. Lett. 104 153902

    [17]

    Sámson Z L, MacDonald K F, De Angelis F, Gholipour B, Knight K, Huang C C, Di Fabrizio E, Hewak D W, Zheludev N I 2010 Appl. Phys. Lett. 96 143105

    [18]

    Fedotov V A, Mladyonov P L, Prosvirnin S L, Rogacheva A V, Chen Y, Zheludev N I 2006 Phys. Rev. Lett. 97 167401

    [19]

    Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I 2009 Opt. Express 17 8548

    [20]

    Tanaka K, Plum E, Ou J Y, Uchino T, Zheludev N I 2010 Phys. Rev. Lett. 105 227403

    [21]

    Fedotov V A, Tsiatmas A, Shi J H, Buckingham R, de Groot P, Chen Y, Wang S, Zheludev N I 2010 Opt. Express 18 9015

    [22]

    Singh R, Al-Naib I A I, Koch M, Zhang W L 2011 Opt. Expres 19 6312

    [23]

    Xiao X, Wu J, Miyamaru F, Zhang M, Li S, Takeda M W, Wen W, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [24]

    Plum E, Tanaka K, Chen W T, Fedotov V A, Tsai D P, Zheludev N I 2011 J. Opt. 13 055102

    [25]

    Lu Y H, Rhee J Y, Jang W H, Lee Y P 2010 Opt. Express 18 20912

    [26]

    Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, and Giessen H 2006 Opt. Express 14 8827

    [27]

    Yang R, Xie Y J, Li X F, Jiang J, Wang Y Y, Wang R 2009 Acta Phys. Sin. 58 901 (in Chinese) [杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞 2009 物理学报 58 901]

  • [1] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [2] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [3] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [4] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [5] 褚培新, 张玉斌, 陈俊学. 开口狭缝调制的耦合微腔中表面等离激元诱导透明特性. 物理学报, 2020, 69(13): 134205. doi: 10.7498/aps.69.20200369
    [6] 王梦宇, 孟令俊, 杨煜, 钟汇凯, 吴涛, 刘彬, 张磊, 伏燕军, 王克逸. 扁长型微瓶腔中的回音壁模式选择及Fano谐振. 物理学报, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [7] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [9] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [10] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [13] 边成玲, 朱江, 陆佳雯, 闫甲璐, 陈丽清, 王增斌, 区泽宇, 张卫平. 基于电磁诱导透明的原子自旋波读出效率实验研究. 物理学报, 2013, 62(17): 174207. doi: 10.7498/aps.62.174207
    [14] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [15] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [16] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [17] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  8102
  • PDF下载量:  1425
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-21
  • 修回日期:  2012-01-09
  • 刊出日期:  2012-08-05

/

返回文章
返回