搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga掺杂对ZnO纳米结构可见光发射的抑制效应

沈庆鹤 高志伟 丁怀义 张光辉 潘楠 王晓平

引用本文:
Citation:

Ga掺杂对ZnO纳米结构可见光发射的抑制效应

沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平

Suppression of visible light emission of ZnO nanostructures by Ga-doping

Shen Qing-He, Gao Zhi-Wei, Ding Huai-Yi, Zhang Guang-Hui, Pan Nan, Wang Xiao-Ping
PDF
导出引用
  • 采用碳热还原反应和原位掺杂的方法制备了不同Ga掺杂浓度的ZnO纳米结构. X射线衍射 显示掺杂纳米结构中为单一的氧化锌纤锌矿结构. 扫描电子显微镜 观测发现随掺杂浓度的增大, 纳米结构的形貌逐渐从纳米六棱柱变为纳米锥.光致发光 和X射线光电子能谱 测量分别发现随着掺杂浓度升高, 纳米结构的可见发光强度和其中空位 氧峰相对强度逐渐减小直至消失, 两者存在很强的相关性. 上述结果为ZnO可见光发射的氧空位机理提供了新的实验证据. 对Ga掺杂抑制纳米结构中氧空位的原因进行了分析.
    Ga-doped ZnO nanostructures with various doping concentrations are prepared by using carbon thermal reduction reaction and in situ doping method. X-ray diffraction measurement reveals only wurzite structures existing in Ga-doped ZnO nanostructures. Scaning electron microscopy observations show that with the increase of Ga doping concentration, the morphology of ZnO nanstrucuture varies gradually from nanorods to nanocones. From the photoluminescence, we find that the visible light emission of ZnO nanostructures can be suppressed obviously and even disappears with the increase of Ga doping concentration. Moreover, the suppression of visible light emission is correlated well with the behavior, and X-ray photoelectron spectroscopy measurement reveals that the vacancy oxygen in ZnO nanostructure decreases drastically with the increase of Ga doping concentration. This result offers a new strong evidence for the mechanism that the visible light emission of ZnO nanostructures is caused by the oxygen vacancy defects. This work also demonstrates that a little Ga incorporation into ZnO nanostructures can effectively reduce the oxygen vacancy defects occurring.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB921403)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB921403).
    [1]

    Ahsanulhaq Q, Umar A, Hahn Y B 2007 Nanotechnology 18 115603

    [2]

    Shen G Z, Chen P C, Ryu K M, Zhou C W 2009 J. Mater. Chem. 19 828

    [3]

    Song J H, Wang X D, Riedo E, Wang Z L 2005 J. Phys. Chem. B 109 9869

    [4]

    Umar A, Karunagaran B, Suh E K, Hahn Y B 2006 Nanotechnology 17 4072

    [5]

    Liu J Z, Ahn Y H, Park J Y, Koh K H, Lee S 2009 Nanotechnology 20 5203

    [6]

    Djurišić A B, Ng A M C, Chen X Y 2010 Prog. Quant. Electron. 34 191

    [7]

    Djurišić A B, Leung Y H 2006 Small 2 944

    [8]

    Zhang G B, Shi C S, Han Z F, Shi J Y, Fu Z X, Kirm M, Zimmerer G 2001 Chin. Phys. Lett. 18 441

    [9]

    Dai L, Chen X L, Wang W J, Zhou T, Hu B Q 2003 J. Phys. Condens. Matter 15 2221

    [10]

    Qiu J, Li X, He W, Park S J, Kim H K, Hwang Y H, Lee J H, Kim Y D 2009 Nanotechnology 20 155603

    [11]

    Guo C X, Fu Z X, Shi C S 1999 Chin. Phys. Lett. 16 146

    [12]

    Chen X L, Xu C S, Liu Y X, Qiao H Q, Xu H T, Ning Y H, Liu Y C 2010 J. Nanosci. Nanotechnol. 10 2185

    [13]

    Liu X, Wu X, Cao H, Chang R P H 2004 J. Appl. Phys. 95 3141

    [14]

    Lin B X, Fu Z X, Jia Y B, Liao G H 2001 Acta Phys. Sin. 50 2208 (in Chinese) [林碧霞, 傅竹西, 贾云波, 廖桂红 2001 物理学报 50 2208]

    [15]

    Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E, Cantwell G 2002 Appl. Phys. Lett. 81 662

    [16]

    Xue H Z, Pan N, Zeng R G, Li M, Sun X, Ding Z J, Wang X P, Hou J G 2009 J. Phys. Chem. C 113 12715

    [17]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101

    [18]

    Ahn C H, Han W S, Kong B H, Cho H K 2009 Nanotechnology 20 015601

    [19]

    Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T 2008 Adv. Mater. 20 168

    [20]

    Zhou M J, Zhu H J, Jiao Y, Rao Y Y, Hark S, Liu Y, Peng L M, Li Q 2009 J. Phys. Chem. C 113 8945

    [21]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [22]

    Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D 2001 Adv. Mater. 13 133

    [23]

    Chang L W, Yeh J W, Cheng C L, Shieu F S, Shih H C 2011 Appl. Surf. Sci. 257 3145

    [24]

    Song Y W, Lee S Y 2009 Thin Solid Films 518 1323

    [25]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth 310 4477

    [26]

    Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H 2008 Opt. Mater. 31 237

    [27]

    Wang H H, Baek S, Song J J, Lee J, Lim S W 2008 Nanotechnology 19 075607

    [28]

    Xu C X, Sun X W, Chen B J 2004 Appl. Phys. Lett. 84 1540

    [29]

    Patra M K, Manzoor K, Manoth M, Vadera S P, Kumar N 2008 J. Lumin. 128 267

    [30]

    Pan N, Wang X P, Zhang K, Hu H L, Xu B, Li F Q, Hou J G 2005 Nanotechnology 16 1069

    [31]

    Pan N, Wang X P, Li M, Li F Q, Hou J G 2007 J. Phys. Chem. C 111 17265

    [32]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [33]

    Escobedo-Morales A, Pal U 2008 Appl. Phys. Lett. 93 193120

    [34]

    Zhang S B, Wei S H, Alex Z 2001 Phys. Rev. B 63 075205

  • [1]

    Ahsanulhaq Q, Umar A, Hahn Y B 2007 Nanotechnology 18 115603

    [2]

    Shen G Z, Chen P C, Ryu K M, Zhou C W 2009 J. Mater. Chem. 19 828

    [3]

    Song J H, Wang X D, Riedo E, Wang Z L 2005 J. Phys. Chem. B 109 9869

    [4]

    Umar A, Karunagaran B, Suh E K, Hahn Y B 2006 Nanotechnology 17 4072

    [5]

    Liu J Z, Ahn Y H, Park J Y, Koh K H, Lee S 2009 Nanotechnology 20 5203

    [6]

    Djurišić A B, Ng A M C, Chen X Y 2010 Prog. Quant. Electron. 34 191

    [7]

    Djurišić A B, Leung Y H 2006 Small 2 944

    [8]

    Zhang G B, Shi C S, Han Z F, Shi J Y, Fu Z X, Kirm M, Zimmerer G 2001 Chin. Phys. Lett. 18 441

    [9]

    Dai L, Chen X L, Wang W J, Zhou T, Hu B Q 2003 J. Phys. Condens. Matter 15 2221

    [10]

    Qiu J, Li X, He W, Park S J, Kim H K, Hwang Y H, Lee J H, Kim Y D 2009 Nanotechnology 20 155603

    [11]

    Guo C X, Fu Z X, Shi C S 1999 Chin. Phys. Lett. 16 146

    [12]

    Chen X L, Xu C S, Liu Y X, Qiao H Q, Xu H T, Ning Y H, Liu Y C 2010 J. Nanosci. Nanotechnol. 10 2185

    [13]

    Liu X, Wu X, Cao H, Chang R P H 2004 J. Appl. Phys. 95 3141

    [14]

    Lin B X, Fu Z X, Jia Y B, Liao G H 2001 Acta Phys. Sin. 50 2208 (in Chinese) [林碧霞, 傅竹西, 贾云波, 廖桂红 2001 物理学报 50 2208]

    [15]

    Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E, Cantwell G 2002 Appl. Phys. Lett. 81 662

    [16]

    Xue H Z, Pan N, Zeng R G, Li M, Sun X, Ding Z J, Wang X P, Hou J G 2009 J. Phys. Chem. C 113 12715

    [17]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101

    [18]

    Ahn C H, Han W S, Kong B H, Cho H K 2009 Nanotechnology 20 015601

    [19]

    Yuan G D, Zhang W J, Jie J S, Fan X, Tang J X, Shafiq I, Ye Z Z, Lee C S, Lee S T 2008 Adv. Mater. 20 168

    [20]

    Zhou M J, Zhu H J, Jiao Y, Rao Y Y, Hark S, Liu Y, Peng L M, Li Q 2009 J. Phys. Chem. C 113 8945

    [21]

    Zhong J, Muthukumar S, Chen Y, Lu Y, Ng H M, Jiang W, Garfunkel E L 2003 Appl. Phys. Lett. 83 3401

    [22]

    Huang M H, Wu Y Y, Feick H, Tran N, Weber E, Yang P D 2001 Adv. Mater. 13 133

    [23]

    Chang L W, Yeh J W, Cheng C L, Shieu F S, Shih H C 2011 Appl. Surf. Sci. 257 3145

    [24]

    Song Y W, Lee S Y 2009 Thin Solid Films 518 1323

    [25]

    Lee S Y, Song Y W, Jeon K A 2008 J. Cryst. Growth 310 4477

    [26]

    Zhu L P, Li J S, Ye Z Z, He H P, Chen X J, Zhao B H 2008 Opt. Mater. 31 237

    [27]

    Wang H H, Baek S, Song J J, Lee J, Lim S W 2008 Nanotechnology 19 075607

    [28]

    Xu C X, Sun X W, Chen B J 2004 Appl. Phys. Lett. 84 1540

    [29]

    Patra M K, Manzoor K, Manoth M, Vadera S P, Kumar N 2008 J. Lumin. 128 267

    [30]

    Pan N, Wang X P, Zhang K, Hu H L, Xu B, Li F Q, Hou J G 2005 Nanotechnology 16 1069

    [31]

    Pan N, Wang X P, Li M, Li F Q, Hou J G 2007 J. Phys. Chem. C 111 17265

    [32]

    Chen M, Wang X, Yu Y H, Pei Z L, Bai X D, Sun C, Huang R F, Wen L S 2000 Appl. Surf. Sci. 158 134

    [33]

    Escobedo-Morales A, Pal U 2008 Appl. Phys. Lett. 93 193120

    [34]

    Zhang S B, Wei S H, Alex Z 2001 Phys. Rev. B 63 075205

  • [1] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [3] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [4] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [5] 范志东, 周子淳, 刘绰, 马蕾, 彭英才. Eu掺杂Si纳米线的光致发光特性. 物理学报, 2015, 64(14): 148103. doi: 10.7498/aps.64.148103
    [6] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [7] 郑树文, 范广涵, 张涛, 皮辉, 俆开放. Ga掺杂对纤锌矿TM0.125Zn0.875O(TM=Be, Mg)电子结构和光学能隙的影响. 物理学报, 2014, 63(8): 087101. doi: 10.7498/aps.63.087101
    [8] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究. 物理学报, 2013, 62(2): 027501. doi: 10.7498/aps.62.027501
    [9] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [10] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [11] 路芳, 张兴华, 卢遵铭, 徐学文, 唐成春. Sr和Ba替代对Eu掺杂Ca2.955Si2O7的结构和发光特性的影响研究. 物理学报, 2012, 61(14): 144209. doi: 10.7498/aps.61.144209
    [12] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [13] 孙运斌, 张向群, 李国科, 杨海涛, 成昭华. 氧空位对Co掺杂TiO2稀磁半导体中杂质分布和磁交换的影响. 物理学报, 2012, 61(2): 027503. doi: 10.7498/aps.61.027503
    [14] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [15] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质. 物理学报, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [16] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [17] 冀子武, 三野弘文, 小嵨映二, 秋本良一, 嶽山正二郎. 调制n型掺杂ZnSe/BeTe Ⅱ型量子阱结构的发光特性. 物理学报, 2008, 57(5): 3260-3266. doi: 10.7498/aps.57.3260
    [18] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [19] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [20] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
计量
  • 文章访问数:  6145
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-31
  • 修回日期:  2012-02-04
  • 刊出日期:  2012-08-05

/

返回文章
返回