搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Gd3+钼酸盐AMoO4 (A=Ca, Sr, Ba, Pb)自旋哈密顿参量的理论计算

杨维清 张胤 高敏 林媛 赵小云

引用本文:
Citation:

掺Gd3+钼酸盐AMoO4 (A=Ca, Sr, Ba, Pb)自旋哈密顿参量的理论计算

杨维清, 张胤, 高敏, 林媛, 赵小云

Theoretical investigation on the spin-Hamiltonian parameters for Gd3+-doped molybdates AMoO4 (A=Ca, Sr, Ba, Pb)

Yang Wei-Qing, Zhang Yin, Gao Min, Lin Yuan, Zhao Xiao-Yun
PDF
导出引用
  • 采用基于单电子晶体场机制的对角化能量矩阵方法, 计算了Gd3+在钼酸盐AMoO4 (A=Ca, Sr, Ba, Pb)晶体中的自旋哈密顿参量(g因子g//, g⊥和零场分裂b20, b40, b44, b60, b64). 矩阵中的晶体场参量采用重叠模型计算. 计算结果显示, 应用三个合理的可调参量[即重叠模型中的内禀参量A2 (R0), A4 (R0)和A6 (R0)], 计算的七个自旋哈密顿参量与实验结果符合甚好, 表明该方法可用于计算或解释Gd3+在晶体中的自旋哈密顿参量.
    In this paper the spin-Hamiltonian parameters, g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64, for Gd3+ ion in molybdates AMoO4 (A=Ca, Sr, Ba, Pb) are calculated by a diagonalization (of energy matrix) method based on one-electron crystal field mechanism. The crystal field parameters in the matrix are calculated from the superposition model. The results indicate that seven calculated spin-Hamiltonian parameters are in good agreement with the experimental values by using only three reasonable adjustable parameters (i.e., the intrinsic parameters Ak (R0), where k=2, 4, 6, in the superposition model). It is shown that the diagonalization method can be used to calculate and explain the spin-Hamiltonian parameters of Gd3+ ion in crystals. The results are discussed.
    • 基金项目: 国家自然科学基金(批准号:11028409,51202023)、中国博士后科学基金(批准号:2012M511917)和成都信息工程学院科研基金(批准号:2012M511917)资助的课题.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 11028409, 51202023), the China Postdoctoral Science Foundation, China (Grant No. 2012M511917), and the Scientific Research Foundation of Chengdu University of Information Technology, China (Grant No. KYTZ201208).
    [1]

    Han Y F, Li J Z, Chen Z Q, Lin L, Li B, Wang G F 2009 J. Synth. Cryst. 38 190 (in Chinese) [韩永飞, 李景照, 陈振强, 林浪, 李兵, 王国富 2009 人工晶体学报 38 190]

    [2]

    Chung J H, Ryu J H, Eun J W, Lee J H, Lee S Y, Heo T H, Chol B G, Shim K B 2012 J. Alloys Comp. 522 30

    [3]

    Cao X Q, Wei T, Chen Y H, Yin M, Guo C X, Zhang W P 2011 J. Rare Earths 29 1029

    [4]

    Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 物理学报 60 037805]

    [5]

    Sun J Y, Cao C, Du H Y 2011 Acta Phys. Sin. 60 127801 (in Chinese) [孙家跃, 曹纯, 杜海燕 2011 物理学报 60 127801]

    [6]

    Yang W Q, Liu H G, Liu G K, Lin Y, Gao M, Zhao X Y, Zheng W C, Chen Y, Xu J, Li L Z 2012 Acta Mater. 60 5399

    [7]

    Gavalli E, Angiuli F, Boutinaud P, Mahiou R 2012 J. Solid State Chem. 185 136

    [8]

    Trabelsi I, Dammak M, Maalej R, Kammoun M 2011 Physica B 406 315

    [9]

    Wishwamittar, Puri S P 1974 J. Chem. Phys. 61 3720

    [10]

    Kurkin I N, Tsvetkov E A 1970 Sov. Phys. Solid State 11 3027

    [11]

    Rosa J, Asatryan H R, Nikl M 1996 Phys. Status Solidi A 158 573

    [12]

    Meilman M L, Slovev N V 1965 Sov. Phys. Solid State 7 2512

    [13]

    Kurkin I N, Stepanov V G 1965 Sov. Phys. Solid State 7 223

    [14]

    Meilman M L, Samoilovich M I, Potkin L I, Sergeeva N I 1967 Sov. Phys. Solid State 8 1864

    [15]

    Kurkin T N, Shekun L Y 1965 Sov. Phys. Solid State 6 1560

    [16]

    Newman D J, Urban W 1975 Adv. Phys. 24 793

    [17]

    Wybourne B G 1966 Phys. Rev. 148 317

    [18]

    Newman D J, Ng B 1989 Rep. Prog. Phys. 52 699

    [19]

    Siu G G, Newman D J 1982 J. Phys. C: Solid State Phys. 15 6753

    [20]

    Newman D J, Ng Betty 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) p83

    [21]

    Chen X Y, Luo Z D 1999 Chin. Phys. 8 607

    [22]

    Zheng W C, Yang W Q, Liu H G 2011 Phil. Mag. 91 4045

    [23]

    Yang W Q, Zheng W C 2011 Spectrochim. Acta A 79 1291

    [24]

    Yang W Q, Lin Y, Zheng W C, Zhao X Y 2012 Supercond. Sci. Technol. 25 065011

    [25]

    Garmen E, Daniels E, King J S 1971 J. Chem. Phys. 55 1093

    [26]

    Nassif V, Carbonio R E 1999 J. Solid State Chem. 146 266

    [27]

    Buckmaster H A, Shing Y H 1972 Phys. Status Solidi A 12 325

    [28]

    Gschneidner K A, Eyring J L 1996 Handbook of the Physics and Chemistry of Rare Earths (Vol. 23) (Amsterdam: Elsevier) p155

    [29]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (London: Oxford University Press) p18, 277

    [30]

    Zhang S Y 2008 Spectroscopy of Rare Earth Ions (Beijing: Science Press) (in Chinese) [张思远 2008 稀土离子光谱学(北京: 科学出版社)]

    [31]

    Bravo D, Lepez F J 1993 J. Chem. Phys. 99 4952

    [32]

    Brito H F, Liu G K 2000 J. Chem. Phys. 112 4334

    [33]

    Hutchison C A, Judd B R, Pope D F D 1959 Proc. Phys. Soc. B 70 514

    [34]

    Magnani N, Amoretti G, Baraldi A, Capelletti R 2002 Eur. Phys. J. B 29 79

    [35]

    Magnani N, Amoretti G, Baraldi A, Capelletti R 2002 Radiat. Eff. Defect. Solids 157 921

    [36]

    Lide D R 2003 CRC Handbook of Chemistry and Physics (84th) (Boca Raton: CRC Press) pp12-14

    [37]

    Zheng W C 1995 Physica B 215 255

    [38]

    Newman D J 1977 Aust. J. Phys. 30 315

    [39]

    Liu H G, Zheng W C, Feng W L 2008 Phil. Mag. 88 3075

    [40]

    Yang W Q, Zheng W C 2011 Spectrochim. Acta A 79 1291

  • [1]

    Han Y F, Li J Z, Chen Z Q, Lin L, Li B, Wang G F 2009 J. Synth. Cryst. 38 190 (in Chinese) [韩永飞, 李景照, 陈振强, 林浪, 李兵, 王国富 2009 人工晶体学报 38 190]

    [2]

    Chung J H, Ryu J H, Eun J W, Lee J H, Lee S Y, Heo T H, Chol B G, Shim K B 2012 J. Alloys Comp. 522 30

    [3]

    Cao X Q, Wei T, Chen Y H, Yin M, Guo C X, Zhang W P 2011 J. Rare Earths 29 1029

    [4]

    Tang H X, Lü S C 2011 Acta Phys. Sin. 60 037805 (in Chinese) [唐红霞, 吕树臣 2011 物理学报 60 037805]

    [5]

    Sun J Y, Cao C, Du H Y 2011 Acta Phys. Sin. 60 127801 (in Chinese) [孙家跃, 曹纯, 杜海燕 2011 物理学报 60 127801]

    [6]

    Yang W Q, Liu H G, Liu G K, Lin Y, Gao M, Zhao X Y, Zheng W C, Chen Y, Xu J, Li L Z 2012 Acta Mater. 60 5399

    [7]

    Gavalli E, Angiuli F, Boutinaud P, Mahiou R 2012 J. Solid State Chem. 185 136

    [8]

    Trabelsi I, Dammak M, Maalej R, Kammoun M 2011 Physica B 406 315

    [9]

    Wishwamittar, Puri S P 1974 J. Chem. Phys. 61 3720

    [10]

    Kurkin I N, Tsvetkov E A 1970 Sov. Phys. Solid State 11 3027

    [11]

    Rosa J, Asatryan H R, Nikl M 1996 Phys. Status Solidi A 158 573

    [12]

    Meilman M L, Slovev N V 1965 Sov. Phys. Solid State 7 2512

    [13]

    Kurkin I N, Stepanov V G 1965 Sov. Phys. Solid State 7 223

    [14]

    Meilman M L, Samoilovich M I, Potkin L I, Sergeeva N I 1967 Sov. Phys. Solid State 8 1864

    [15]

    Kurkin T N, Shekun L Y 1965 Sov. Phys. Solid State 6 1560

    [16]

    Newman D J, Urban W 1975 Adv. Phys. 24 793

    [17]

    Wybourne B G 1966 Phys. Rev. 148 317

    [18]

    Newman D J, Ng B 1989 Rep. Prog. Phys. 52 699

    [19]

    Siu G G, Newman D J 1982 J. Phys. C: Solid State Phys. 15 6753

    [20]

    Newman D J, Ng Betty 2000 Crystal Field Handbook (Cambridge: Cambridge University Press) p83

    [21]

    Chen X Y, Luo Z D 1999 Chin. Phys. 8 607

    [22]

    Zheng W C, Yang W Q, Liu H G 2011 Phil. Mag. 91 4045

    [23]

    Yang W Q, Zheng W C 2011 Spectrochim. Acta A 79 1291

    [24]

    Yang W Q, Lin Y, Zheng W C, Zhao X Y 2012 Supercond. Sci. Technol. 25 065011

    [25]

    Garmen E, Daniels E, King J S 1971 J. Chem. Phys. 55 1093

    [26]

    Nassif V, Carbonio R E 1999 J. Solid State Chem. 146 266

    [27]

    Buckmaster H A, Shing Y H 1972 Phys. Status Solidi A 12 325

    [28]

    Gschneidner K A, Eyring J L 1996 Handbook of the Physics and Chemistry of Rare Earths (Vol. 23) (Amsterdam: Elsevier) p155

    [29]

    Abragam A, Bleaney B 1970 Electron Paramagnetic Resonance of Transition Ions (London: Oxford University Press) p18, 277

    [30]

    Zhang S Y 2008 Spectroscopy of Rare Earth Ions (Beijing: Science Press) (in Chinese) [张思远 2008 稀土离子光谱学(北京: 科学出版社)]

    [31]

    Bravo D, Lepez F J 1993 J. Chem. Phys. 99 4952

    [32]

    Brito H F, Liu G K 2000 J. Chem. Phys. 112 4334

    [33]

    Hutchison C A, Judd B R, Pope D F D 1959 Proc. Phys. Soc. B 70 514

    [34]

    Magnani N, Amoretti G, Baraldi A, Capelletti R 2002 Eur. Phys. J. B 29 79

    [35]

    Magnani N, Amoretti G, Baraldi A, Capelletti R 2002 Radiat. Eff. Defect. Solids 157 921

    [36]

    Lide D R 2003 CRC Handbook of Chemistry and Physics (84th) (Boca Raton: CRC Press) pp12-14

    [37]

    Zheng W C 1995 Physica B 215 255

    [38]

    Newman D J 1977 Aust. J. Phys. 30 315

    [39]

    Liu H G, Zheng W C, Feng W L 2008 Phil. Mag. 88 3075

    [40]

    Yang W Q, Zheng W C 2011 Spectrochim. Acta A 79 1291

  • [1] 董珊珊, 秦立国, 刘福窑, 龚黎华, 黄接辉. 哈密顿量诱导的量子演化速度. 物理学报, 2023, 72(22): 220301. doi: 10.7498/aps.72.20231009
    [2] 刘坚, 刘军芳, 苏良碧, 张倩, 马凤凯, 姜大朋, 徐军. Gd3+/Y3+共掺对Nd:CaF2晶体光谱性能的影响. 物理学报, 2016, 65(5): 054207. doi: 10.7498/aps.65.054207
    [3] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [4] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [5] 杨子元. 掺杂晶体材料ZnGa2O4:Fe3+局域结构畸变及其微观自旋哈密顿参量研究. 物理学报, 2014, 63(17): 177501. doi: 10.7498/aps.63.177501
    [6] 张民仓. 环状非有心球谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2012, 61(24): 240301. doi: 10.7498/aps.61.240301
    [7] 汪盛烈, 蔡欣, 刘劲松. 有外加电源的串联光折变晶体回路中的独立空间全息-哈密顿屏蔽孤子对. 物理学报, 2012, 61(6): 064213. doi: 10.7498/aps.61.064213
    [8] 杨子元. 立方对称晶场中6S(3d5)态离子的磁相互作用及其自旋哈密顿参量的微观起源. 物理学报, 2008, 57(7): 4512-4520. doi: 10.7498/aps.57.4512
    [9] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [10] 魏 群, 杨子元, 王参军, 许启明. Al2O3:V3+晶体局域结构及其自旋哈密顿参量研究. 物理学报, 2007, 56(4): 2393-2398. doi: 10.7498/aps.56.2393
    [11] 楼智美. 哈密顿Ermakov系统的形式不变性. 物理学报, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [12] 杨子元, 郝 跃. 四角对称晶场中4B1(3d3)态离子的磁相互作用及其自旋哈密顿参量研究. 物理学报, 2005, 54(6): 2883-2892. doi: 10.7498/aps.54.2883
    [13] 陶建武, 石要武, 常文秀. 端口受控哈密顿系统的混沌反控制研究. 物理学报, 2004, 53(6): 1682-1686. doi: 10.7498/aps.53.1682
    [14] 陈绍英, 许海波, 王光瑞, 陈式刚. 耦合哈密顿系统中测度同步的研究. 物理学报, 2004, 53(12): 4098-4110. doi: 10.7498/aps.53.4098
    [15] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析. 物理学报, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [16] 杨子元. 晶体材料中3d2态离子自旋哈密顿参量的微观起源. 物理学报, 2004, 53(6): 1981-1988. doi: 10.7498/aps.53.1981
    [17] 陈增军, 宁西京. 非厄米哈密顿量的物理意义. 物理学报, 2003, 52(11): 2683-2686. doi: 10.7498/aps.52.2683
    [18] 蔡 浩, 陈世荣, 黄念宁. 完全可积的非线性方程建立哈密顿理论的一般方法和对SG方程应用. 物理学报, 2003, 52(9): 2206-2212. doi: 10.7498/aps.52.2206
    [19] 周晴. 二元合金振动哈密顿量的对角化. 物理学报, 1988, 37(6): 1003-1009. doi: 10.7498/aps.37.1003
    [20] 林福成, 祝继康, 黄武汉. 推广的等效自旋哈密顿. 物理学报, 1964, 20(11): 1114-1123. doi: 10.7498/aps.20.1114
计量
  • 文章访问数:  5205
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-20
  • 修回日期:  2012-09-20
  • 刊出日期:  2013-02-05

/

返回文章
返回