搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁颗粒群着火和燃烧过程数值模拟

杨晋朝 夏智勋 胡建新

引用本文:
Citation:

镁颗粒群着火和燃烧过程数值模拟

杨晋朝, 夏智勋, 胡建新

Numerical studies of ignition and combustion of pulverized magnesium particle cloud

Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin
PDF
导出引用
  • 建立了一维非稳态球形镁颗粒群的着火燃烧模型, 数值模拟镁颗粒群的着火和燃烧过程, 研究表明, 颗粒群着火首先发生在颗粒群边界, 随后初始的燃烧火焰会分离为两个, 一个向颗粒群内部传播, 一个向外部传播, 最终内部火焰消失, 外部火焰维持并控制着整个颗粒群的燃烧; 内火焰向颗粒群内部传播过程中, 传播速度会逐渐加快, 且火焰温度值呈逐渐降低趋势. 分析了颗粒群内部参数和环境参数对镁颗粒群着火燃烧的影响. 随颗粒浓度的增大, 颗粒群着火时间略有增长, 但火焰传播速度更快, 燃烧稳定时火焰球尺寸也更大. 颗粒群初温越高, 则颗粒群着火时间越短, 火焰传播速度也会加快, 但燃烧稳定时火焰球尺寸基本不变. 环境温度对颗粒群着火燃烧的影响较复杂, 环境温度越高, 颗粒群着火时间越短, 但火焰传播速度却越慢, 燃烧稳定时火焰球尺寸变化很小. 颗粒粒径和辐射源温度对颗粒群着火燃烧的影响较显著, 颗粒粒径越小或辐射源温度越高, 则颗粒群着火时间越短, 火焰传播速度越快, 燃烧稳定时火焰球尺寸也越大. 数值模拟结果与文献中试验结果相一致.
    A one-dimensional unsteady ignition and combustion model is established for the pulverized magnesium particles in a spherical cloud. The behavior of ignition and combustion of magnesium particle cloud is numerically simulated. The result shows that the ignition of particle cloud occurs at the boundary of particle cloud first, then the initial of which bifurcates into two flames, one of which propagates into the particle cloud, and the other moves away from it. Finally, the inner flame disappears because of O2 depletion, and only the outer flame, which maintains and controls the combustion of magnesium particle cloud, exists at the outside of it. The flame propagation velocity accelerates, while the flame temperature decreases during the process of the inner flame going into the magnesium particle cloud. The effects of the interior and the environmental parameters on the ignition and combustion of the magnesium particle cloud were analyzed. With the increase in the particle concentration, the ignition delay time increases slightly, but the propagation velocity of the inner flame becomes faster, and the steady particle cloud flame sphere is enlarging. With increasing initial temperature of the particle cloud, the ignition delay time canbe reduced significantly, the propagation of inner flame speeds up, but the size of steady particle cloud flame sphere keeps almost constant. The effect of ambient temperature on ignition and combustion of particle cloud is complicated. The higher the ambient temperature, the shorter the ignition delay time, however, the propagation velocity of inner flame becomes slower, and the size of the steady particle cloud flame sphere changes very insignificantly. Both the size of particle and the temperature of radiation source have great influences on the ignition and combustion of particle cloud. The smaller the particle size or the higher the temperature of radiation source, the shorter the ignition delay time of particle cloud, the faster the propagation velocity of inner flame, and the bigger the size of steady flame sphere. The results of numerical simulation are in good agreement with experimental data published in the literature.
    • 基金项目: 国家自然科学基金(批准号: 51006118)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51006118).
    [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol 30 474 (in Chinese) [申慧君, 夏智勋, 胡建新, 罗振兵 2007 固体火箭技术 30 474]

    [2]

    Krol D, Pekediz A, de Lasa H 2000 Powder Technol 108 6

    [3]

    Bai D R, Jin Y 1991 J. Chemical Industry and Engineering (China) 42 697 (in Chinese) [白丁荣, 金涌 1991 化工学报 42 697]

    [4]

    Liu M, Zhang H Q, Wang X L, Guo Y C, Lin W Y 2003 Journal of Combustion Science and Technology 9 128 (in Chinese) [刘敏, 张会强, 王希麟, 郭印诚, 林文漪 2003 燃烧科学与技术 9 128]

    [5]

    Liu C R, Guo Y C, Wang X L 2006 J. Tsinghua Univ. (Sci. & Tech.) 46 728 (in Chinese) [刘春嵘, 郭印诚, 王希麟 2006 清华大学学报(自然科学版) 46 728]

    [6]

    Shi H X, Luo Z Y, Wang Q H, Cen K F 2005 Chinese Journal of Power Engineering 25 60 [石惠娴, 骆仲泱, 王勤辉, 岑可法 2005 中国动力工程学报 25 60]

    [7]

    Liu X Z, Yu S Z, Li C J 2007 the Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲, 于守志, 李存杰 2007 飞航导弹动力装置 (下) (北京: 中国宇航出版社)第284页]

    [8]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [9]

    Chiu H H, Liu T M 1977 Combustion Science and Technology 17 127

    [10]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion/ The Combustion Institute Haifa, Israel, August 8-13, 1982 p971

    [11]

    Chiu H H, Ahluwalia R K, Koh B, Croke E J 1978 AIAA 16th Aerospace Sciences meeting Huntsville, Alabama, January 16-18, 1978 p75

    [12]

    Bellan J, Cuffel R 1983 Combustion and Flame 51 55

    [13]

    Bellan J, Harstad K 1990 Combustion and Flame 79 272

    [14]

    Annamalai K, Ramalingam S C 1987 Combustion and Flame 70 307

    [15]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [16]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [17]

    Annamalai K, Ryan W 1994 Prog. Energy Combust. Sci. 20 487

    [18]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA Iournal 17 1234

    [19]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust and Flame 129 392

    [20]

    Daisuke S, Maki Y, Shinji N, Toshikazu K 2005 Microgravity Sci. Technol. XVII-3 23

    [21]

    Daisuke S, Maki Y, Shinji N, Toshikazu K 2007 Proceedings of the Combustion Institute 31 2149

    [22]

    Masato M, Hiroshi O, Naoya K, Masao K, Yuichiro W, Shinichi Y 2005 Combust. Flame 141 241

    [23]

    Masato M, Hiroshi O, Naoya K, Yuichiro W, Masao K, Shinichi Y 2006 Combust. Flame 146 391

    [24]

    Liu X J, Li L 2009 International Journal of Heat and Mass transfer 52 4785

    [25]

    Du X Y, Gopalakrishnan C, Annamalai K 1995 Fuel 74 487

    [26]

    Edward L D, Vern K H 1999 Combustion and Flame 118 262

    [27]

    Edward L D, Vern K H 2000 Combustion and Flame 122 20

    [28]

    Sun J H, Dobashi R, Hirano T 2006 Journal of Loss Prevention in the Process Industries 19 135

    [29]

    Yin Y, Sun J H, Ding Y B, Guo S, He X C 2009 Journal of Hazardous Materials 170 340

    [30]

    Zhao Y H, Kim H Y, Yoon S S 2007 Fuel 86 1102

    [31]

    Yang J Z, Xia Z X, Hu J X 2012 Acta Phys. Sin. 61 164702 (in Chinese) [杨晋朝, 夏智勋, 胡建新 2012 物理学报 61 164702]

    [32]

    Ezhovskii G K, Ozerov E S 1978 Combustion, Explosion, and Shock Waves 13 716

    [33]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion, Explosion and Shock Waves 13 475

    [34]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technology 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [35]

    Chen P, Zhang M X 2002 Special Casting & Nonferrous Alloys-2002 Year Die-Casting Special issue 323 (in Chinese) [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [36]

    Gurevich M A, Stepannov A M 1968 Fizika Goreniya i Vzryva 4 189

    [37]

    Kashireninov O E, Manelis G B 1982 Russ. J. Phys. Chem 56 630

    [38]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [39]

    Edward L D, Charles H B, Edward P V 2000 Combust. Flame 122 30

    [40]

    Shoshin Y, Dreizin E 2003 Combust. Flame 133 275

  • [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol 30 474 (in Chinese) [申慧君, 夏智勋, 胡建新, 罗振兵 2007 固体火箭技术 30 474]

    [2]

    Krol D, Pekediz A, de Lasa H 2000 Powder Technol 108 6

    [3]

    Bai D R, Jin Y 1991 J. Chemical Industry and Engineering (China) 42 697 (in Chinese) [白丁荣, 金涌 1991 化工学报 42 697]

    [4]

    Liu M, Zhang H Q, Wang X L, Guo Y C, Lin W Y 2003 Journal of Combustion Science and Technology 9 128 (in Chinese) [刘敏, 张会强, 王希麟, 郭印诚, 林文漪 2003 燃烧科学与技术 9 128]

    [5]

    Liu C R, Guo Y C, Wang X L 2006 J. Tsinghua Univ. (Sci. & Tech.) 46 728 (in Chinese) [刘春嵘, 郭印诚, 王希麟 2006 清华大学学报(自然科学版) 46 728]

    [6]

    Shi H X, Luo Z Y, Wang Q H, Cen K F 2005 Chinese Journal of Power Engineering 25 60 [石惠娴, 骆仲泱, 王勤辉, 岑可法 2005 中国动力工程学报 25 60]

    [7]

    Liu X Z, Yu S Z, Li C J 2007 the Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲, 于守志, 李存杰 2007 飞航导弹动力装置 (下) (北京: 中国宇航出版社)第284页]

    [8]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [9]

    Chiu H H, Liu T M 1977 Combustion Science and Technology 17 127

    [10]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion/ The Combustion Institute Haifa, Israel, August 8-13, 1982 p971

    [11]

    Chiu H H, Ahluwalia R K, Koh B, Croke E J 1978 AIAA 16th Aerospace Sciences meeting Huntsville, Alabama, January 16-18, 1978 p75

    [12]

    Bellan J, Cuffel R 1983 Combustion and Flame 51 55

    [13]

    Bellan J, Harstad K 1990 Combustion and Flame 79 272

    [14]

    Annamalai K, Ramalingam S C 1987 Combustion and Flame 70 307

    [15]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [16]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [17]

    Annamalai K, Ryan W 1994 Prog. Energy Combust. Sci. 20 487

    [18]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA Iournal 17 1234

    [19]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust and Flame 129 392

    [20]

    Daisuke S, Maki Y, Shinji N, Toshikazu K 2005 Microgravity Sci. Technol. XVII-3 23

    [21]

    Daisuke S, Maki Y, Shinji N, Toshikazu K 2007 Proceedings of the Combustion Institute 31 2149

    [22]

    Masato M, Hiroshi O, Naoya K, Masao K, Yuichiro W, Shinichi Y 2005 Combust. Flame 141 241

    [23]

    Masato M, Hiroshi O, Naoya K, Yuichiro W, Masao K, Shinichi Y 2006 Combust. Flame 146 391

    [24]

    Liu X J, Li L 2009 International Journal of Heat and Mass transfer 52 4785

    [25]

    Du X Y, Gopalakrishnan C, Annamalai K 1995 Fuel 74 487

    [26]

    Edward L D, Vern K H 1999 Combustion and Flame 118 262

    [27]

    Edward L D, Vern K H 2000 Combustion and Flame 122 20

    [28]

    Sun J H, Dobashi R, Hirano T 2006 Journal of Loss Prevention in the Process Industries 19 135

    [29]

    Yin Y, Sun J H, Ding Y B, Guo S, He X C 2009 Journal of Hazardous Materials 170 340

    [30]

    Zhao Y H, Kim H Y, Yoon S S 2007 Fuel 86 1102

    [31]

    Yang J Z, Xia Z X, Hu J X 2012 Acta Phys. Sin. 61 164702 (in Chinese) [杨晋朝, 夏智勋, 胡建新 2012 物理学报 61 164702]

    [32]

    Ezhovskii G K, Ozerov E S 1978 Combustion, Explosion, and Shock Waves 13 716

    [33]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion, Explosion and Shock Waves 13 475

    [34]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technology 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [35]

    Chen P, Zhang M X 2002 Special Casting & Nonferrous Alloys-2002 Year Die-Casting Special issue 323 (in Chinese) [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [36]

    Gurevich M A, Stepannov A M 1968 Fizika Goreniya i Vzryva 4 189

    [37]

    Kashireninov O E, Manelis G B 1982 Russ. J. Phys. Chem 56 630

    [38]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [39]

    Edward L D, Charles H B, Edward P V 2000 Combust. Flame 122 30

    [40]

    Shoshin Y, Dreizin E 2003 Combust. Flame 133 275

  • [1] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] 梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓. 钛合金高温摩擦着火理论研究. 物理学报, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [3] 刘龙, 夏智勋, 黄利亚, 马立坤, 陈斌斌. 镁颗粒-空气混合物一维非稳态爆震波特性数值模拟研究. 物理学报, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [4] 杨建刚, 胡春波, 朱小飞, 李悦, 胡旭, 邓哲. 粉末颗粒气力加注特性实验研究. 物理学报, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [5] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [6] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [7] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [8] 陈福振, 强洪夫, 苗刚, 高巍然. 燃料抛撒成雾及其燃烧爆炸的光滑离散颗粒流体动力学方法数值模拟研究. 物理学报, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [9] 杨辰, 房超, 张建, 曹建主. 球床高温气冷堆燃料颗粒中放射性核素的累积释放份额研究. 物理学报, 2014, 63(3): 032802. doi: 10.7498/aps.63.032802
    [10] 方传波, 夏智勋, 肖云雷, 胡建新, 刘道平. 考虑Stefan影响的单颗粒硼着火过程研究. 物理学报, 2013, 62(16): 164702. doi: 10.7498/aps.62.164702
    [11] 朱利, 刘尚合, 郑会志, 魏明, 胡小锋, 索罗金·安德烈. 航空发动机喷流起电机理建模与试验研究. 物理学报, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [12] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [13] 杨晋朝, 夏智勋, 胡建新. 镁颗粒群非稳态着火过程数值模拟. 物理学报, 2012, 61(16): 164702. doi: 10.7498/aps.61.164702
    [14] 杨娟, 卞保民, 彭刚, 闫振纲, 李振华. 悬浮颗粒散射脉冲信号群的统计分形特性. 物理学报, 2010, 59(11): 7713-7718. doi: 10.7498/aps.59.7713
    [15] 杨义涛, 张崇宏, 周丽宏, 李炳生, 张丽卿. 惰性气体离子注入铝镁尖晶石合成金属纳米颗粒的探索. 物理学报, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [16] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射. 物理学报, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [17] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [18] 陈金全, 王凡, 高美娟. 群表示论的物理方法(Ⅲ)——置换群外积约化系数和SUn群CG系数. 物理学报, 1978, 27(1): 31-40. doi: 10.7498/aps.27.31
    [19] 陈金全, 王凡, 高美娟. 群表示论的物理方法(Ⅱ)——置换群亚标准基和酉群Gelfand基. 物理学报, 1977, 26(5): 427-432. doi: 10.7498/aps.26.427
    [20] 谢希德, 陈孝琛. 空间群的选择定则. 物理学报, 1964, 20(10): 970-990. doi: 10.7498/aps.20.970
计量
  • 文章访问数:  5373
  • PDF下载量:  15781
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28
  • 修回日期:  2012-11-27
  • 刊出日期:  2013-04-05

/

返回文章
返回