搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂对多层Ge/Si(001)量子点光致发光的影响

刘智 李亚明 薛春来 成步文 王启明

引用本文:
Citation:

掺杂对多层Ge/Si(001)量子点光致发光的影响

刘智, 李亚明, 薛春来, 成步文, 王启明

Effect of doping on the photoluminescence of multilayer Ge quantum dots deposited on Si(001) substrate

Liu Zhi, Li Ya-Ming, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming
PDF
导出引用
  • 利用超高真空化学气相沉积设备, 在Si (001) 衬底上外延生长了多个四层Ge/Si量子点样品. 通过原位掺杂的方法, 对不同样品中的Ge/Si量子点分别进行了未掺杂、磷掺杂和硼掺杂. 相比未掺杂的样品, 磷掺杂不影响Ge/Si量子点的表面形貌, 但可以有效增强其室温光致发光; 而硼掺杂会增强Ge/Si量子点的合并, 降低小尺寸Ge/Si量子点的密度, 但其光致发光会减弱. 磷掺杂增强Ge/Si量子点光致发光的原因是, 磷掺杂为Ge/Si量子点提供了更多参与辐射复合的电子.
    Four-bilayer Ge quantum dots (QDs) with Si spacers were epitaxially grown on Si(001) substrates by means of ultrahigh vacuum chemical vapor deposition. In two samples, Ge QDs were in situ doped with phosphorus or boron, separately. Surface morphology and room temperature photoluminescence (PL) of multilayer Ge/Si QDs wer studied. Compared with the undoped Ge QDs, phosphorus-doping did not change the morphology of Ge QDs, enhanced PL wer observed from the phosphorus-doped Ge QDs. But reduction of Ge QDs density and PL intensity wer observed from the boron-doped Ge QDs. The intensity enhancement of PL could be attributed to the sufficient supply of electrons in Ge QDs for radiative recombination.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB632103)和国家自然科学基金(批准号: 61036003, 61176013 和61177038)资助的课题.
    • Funds: Project supported by the Major State Basic Research Development Program of China (Grant No. 2013CB632103), and the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, 61177038).
    [1]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [2]

    Green M A, Zhao J, Wang A, Reece P J, Gal M 2001 Nature 412 805

    [3]

    Stangl J, Holy V, Bauer G 2004 Rev. Mod. Phys. 76 725

    [4]

    Liu J L, Wu W G, Balandin A, Jin G L, Wang K L 1999 Appl. Phys. Lett. 74 185

    [5]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [6]

    Das S, Das K, Singha R, Manna S, Dhar A, Ray S, Raychaudhuri A 2011 Nanoscale Res. Lett. 6 416

    [7]

    El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M 2004 J. Appl. Phys. 96 997

    [8]

    Vahala K J, Zah C E 1988 Appl. Phys. Lett. 52 1945

    [9]

    Shi W H, Li C B, Luo L P, Cheng B W, Wang Q M 2005 J. Cryst. Growth 279 329

    [10]

    Liu Z, Cheng B W, Hu W X, Su S J, Li C B, Wang Q M 2012 Nanoscale Res. Lett. 7 383

    [11]

    Mooney P M, Dacol F H, Tsang J C, Chu J O 1993 Appl. Phys. Lett. 62 2069

    [12]

    Peng Y H, Hsu C-H, Kuan C H, Liu C W, Chen P S, Tsai M J, Suen Y W 2004 Appl. Phys. Lett. 85 6107

  • [1]

    Ng W L, Lourenco M A, Gwilliam R M, Ledain S, Shao G, Homewood K P 2001 Nature 410 192

    [2]

    Green M A, Zhao J, Wang A, Reece P J, Gal M 2001 Nature 412 805

    [3]

    Stangl J, Holy V, Bauer G 2004 Rev. Mod. Phys. 76 725

    [4]

    Liu J L, Wu W G, Balandin A, Jin G L, Wang K L 1999 Appl. Phys. Lett. 74 185

    [5]

    Fukatsu S, Sunamura H, Shiraki Y, Komiyama S 1997 Appl. Phys. Lett. 71 258

    [6]

    Das S, Das K, Singha R, Manna S, Dhar A, Ray S, Raychaudhuri A 2011 Nanoscale Res. Lett. 6 416

    [7]

    El Kurdi M, David S, Boucaud P, Kammerer C, Li X, Le Thanh V, Sauvage S, Lourtioz J M 2004 J. Appl. Phys. 96 997

    [8]

    Vahala K J, Zah C E 1988 Appl. Phys. Lett. 52 1945

    [9]

    Shi W H, Li C B, Luo L P, Cheng B W, Wang Q M 2005 J. Cryst. Growth 279 329

    [10]

    Liu Z, Cheng B W, Hu W X, Su S J, Li C B, Wang Q M 2012 Nanoscale Res. Lett. 7 383

    [11]

    Mooney P M, Dacol F H, Tsang J C, Chu J O 1993 Appl. Phys. Lett. 62 2069

    [12]

    Peng Y H, Hsu C-H, Kuan C H, Liu C W, Chen P S, Tsai M J, Suen Y W 2004 Appl. Phys. Lett. 85 6107

计量
  • 文章访问数:  5748
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-01
  • 修回日期:  2013-01-11
  • 刊出日期:  2013-04-05

/

返回文章
返回