搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局地零平面位移对非均匀地表有效空气动力学参数的影响

钟时 杨修群 郭维栋

引用本文:
Citation:

局地零平面位移对非均匀地表有效空气动力学参数的影响

钟时, 杨修群, 郭维栋

Influence of local zero-plane displacement on effective aerodynamic parameters over heterogeneous terrain

Zhong Shi, Yang Xiu-Qun, Guo Wei-Dong
PDF
导出引用
  • 利用最新提出的非均匀地表有效空气动力学参数联合计算方案, 研究了三种非均匀地表情况下局地零平面位移对有效粗糙度和有效零 平面位移影响的统计特征.结果表明, 局地零平面位移对有效粗糙度有增幅作用, 随着局地零平面位移的增加, 有效粗糙度也相应增大, 但局地零平面位移对有效粗糙度的增幅作用随地表粗糙变率增加而略有减小; 有效零平面位移随局地零平面位移的增加而增加, 但总小于线性加权平均值, 且随着地表粗糙变率的增大, 有效零平面位移却有所减小.
    In this paper, we investigate the statistical features of the influences of local zero-plane displacement on effective roughness length and effective zero-plane displacement for three surface categories, with a so-called joint calculation scheme for effective aerodynamic parameters over heterogeneous terrain proposed by Zhong et al. [Zhong Z, Lu W, Song S and Zhang Y 2011 J. Hydrometeor. 12 1610]. The local zero-plane displacement is found to magnify the effective roughness length. However, such a magnification effect tends to decrease as the roughness step increases. On the other hand, the effective zero-plane displacement increases as local zero-plane displacement increasing, though it is always less than the area-weighted linear average of the local zero-plane displacement. However, the effective zero-plane displacement tends to decrease with the roughness step increasing.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2010CB428504, 2011CB952002)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB428504, 2011CB952002).
    [1]

    Hou H H, Sun X L, Shen Y M, Shao J D, Fan Z X, Yi K 2006 Acta Phys. Sin. 55 3124 (in Chinese) [侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易葵 2006 物理学报 55 3124]

    [2]

    Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 物理学报 56 4728]

    [3]

    Zhou B Q, Liu F Z, Zhu M F, Zhou Y Q, Wu Z H, Chen X 2007 Acta Phys. Sin. 56 2422 (in Chinese) [周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈兴 2007 物理学报 56 2422]

    [4]

    Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 物理学报 58 7050]

    [5]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]

    [6]

    Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1

    [7]

    Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036

    [8]

    Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215

    [9]

    André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231

    [10]

    Taylor P A 1987 Bound. Lay. Meteorol. 39 403

    [11]

    Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075

    [12]

    Zeng X, Wang A 2007 J. Hydrometeor. 8 730

    [13]

    Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610

    [14]

    Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505

    [15]

    Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216

    [16]

    Huang J, Zhong Z, Guo W D, Lu W 2013 Acta Phys. Sin. 62 054204 (in Chinese) [黄瑾, 钟中, 郭维栋, 卢伟 2013 物理学报 62 054204]

    [17]

    Lo A K 1995 Bound. Lay. Meteorol. 75 381

  • [1]

    Hou H H, Sun X L, Shen Y M, Shao J D, Fan Z X, Yi K 2006 Acta Phys. Sin. 55 3124 (in Chinese) [侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易葵 2006 物理学报 55 3124]

    [2]

    Hao P F, Yao Z H, He F 2007 Acta Phys. Sin. 56 4728 (in Chinese) [郝鹏飞, 姚朝晖, 何枫 2007 物理学报 56 4728]

    [3]

    Zhou B Q, Liu F Z, Zhu M F, Zhou Y Q, Wu Z H, Chen X 2007 Acta Phys. Sin. 56 2422 (in Chinese) [周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈兴 2007 物理学报 56 2422]

    [4]

    Zhang C B, Chen Y P, Shi M H, Fu P P, Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese) [张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰 2009 物理学报 58 7050]

    [5]

    Li H Q, Guo W D, Sun G D, Zhang Y C 2011 Acta Phys. Sin. 60 019201 (in Chinese) [李红祺, 郭维栋, 孙国栋, 张耀存 2011 物理学报 60 019201]

    [6]

    Sud Y C, Smith W E 1985 Bound. Lay. Meteorol. 33 1

    [7]

    Sud Y C, Shukla J, Mintz Y 1988 J. Appl. Meteorol. 27 1036

    [8]

    Kirk-Davidoff D B, Keith D W 2008 J. Atmos. Sci. 65 2215

    [9]

    André J C, Blondin C 1986 Bound. Lay. Meteorol. 35 231

    [10]

    Taylor P A 1987 Bound. Lay. Meteorol. 39 403

    [11]

    Hasager C B, Jensen N O 1999 Quater. J. Roy. Meteorol. Soc. 125 2075

    [12]

    Zeng X, Wang A 2007 J. Hydrometeor. 8 730

    [13]

    Zhong Z, Lu W, Song S, Zhang Y 2011 J. Hydrometeor. 12 1610

    [14]

    Bou-Zeid E, Meneveau C, Parlange M B 2004 Water Resour. Res. 40 W02505

    [15]

    Bou-Zeid E, Parlange M B, Meneveau C 2007 J. Atmos. Sci. 64 216

    [16]

    Huang J, Zhong Z, Guo W D, Lu W 2013 Acta Phys. Sin. 62 054204 (in Chinese) [黄瑾, 钟中, 郭维栋, 卢伟 2013 物理学报 62 054204]

    [17]

    Lo A K 1995 Bound. Lay. Meteorol. 75 381

  • [1] 宋彤彤, 罗杰, 赖耘. 赝局域有效介质理论. 物理学报, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [2] 翟韩豫, 申佳音, 薛迅. 源自弦景观的有效Quintessence. 物理学报, 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [3] 李芳, 王明清, 郑明, 卢苇, 于庆南, 贾燕, 吴坚. 一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法. 物理学报, 2018, 67(9): 094202. doi: 10.7498/aps.67.20172528
    [4] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [5] 许松, 唐晓明, 苏远大. 横向各向同性固体材料中含定向非均匀体的有效弹性模量. 物理学报, 2015, 64(20): 206201. doi: 10.7498/aps.64.206201
    [6] 徐岩, 樊炜, 冀彦君, 宋仁刚, 陈兵, 赵振华, 陈达. 非相对论弱相互作用玻色气体的有效场理论处理. 物理学报, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [7] 宋永佳, 胡恒山. 含定向非均匀体固体材料的横观各向同性有效弹性模量. 物理学报, 2014, 63(1): 016202. doi: 10.7498/aps.63.016202
    [8] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射. 物理学报, 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [9] 黄瑾, 钟中, 郭维栋, 卢伟. 非均匀地表空气动力学有效粗糙度的统计特征. 物理学报, 2013, 62(5): 054204. doi: 10.7498/aps.62.054204
    [10] 黄永平, 赵光普, 肖希, 王藩侯. 部分空间相干光束在非Kolmogorov湍流大气中的有效曲率半径. 物理学报, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [11] 赵丽霞, 张鹤鸣, 胡辉勇, 戴显英, 宣荣喜. 应变Si电子电导有效质量模型. 物理学报, 2010, 59(9): 6545-6548. doi: 10.7498/aps.59.6545
    [12] 袁都奇. 原子激射器的空间有效增益范围. 物理学报, 2010, 59(8): 5271-5275. doi: 10.7498/aps.59.5271
    [13] 张 雯, 刘彩池, 王海云, 徐岳生, 石义情. 半导体硅熔体的有效(磁)黏度. 物理学报, 2008, 57(6): 3875-3879. doi: 10.7498/aps.57.3875
    [14] 殷建玲, 刘承宜, 杨友源, 刘 江, 范广涵. 原子激光传输的有效ABCD形式研究. 物理学报, 2004, 53(2): 356-361. doi: 10.7498/aps.53.356
    [15] 刘新元, 谢飞翔, 孟树超, 马 平, 杨 涛, 聂瑞娟, 王守证, 王福仁, 戴远东. 大有效面积的高Tc rf SQUID. 物理学报, 2003, 52(10): 2580-2583. doi: 10.7498/aps.52.2580
    [16] 邵钟浩. 具有非均匀零色散波长光纤中的四波混频. 物理学报, 2001, 50(1): 73-78. doi: 10.7498/aps.50.73
    [17] 丁世英, 颜家烈, 余正, 童红武, 史可信, 邱里. YBaCuO超导陶瓷的有效钉扎力. 物理学报, 1990, 39(6): 157-162. doi: 10.7498/aps.39.157
    [18] 董碧珍, 顾本源. 实现光学变换的单个全息透镜的有效设计. 物理学报, 1986, 35(2): 235-242. doi: 10.7498/aps.35.235
    [19] 顾世洧. 极化子有效质量与温度的关系. 物理学报, 1980, 29(5): 609-617. doi: 10.7498/aps.29.609
    [20] 顾世洧. Frankel激子的有效质量与温度的关系. 物理学报, 1980, 29(4): 517-523. doi: 10.7498/aps.29.517
计量
  • 文章访问数:  4897
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-16
  • 修回日期:  2013-03-24
  • 刊出日期:  2013-07-05

/

返回文章
返回