搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析

王爱迪 刘紫玉 张培健 孟洋 李栋 赵宏武

引用本文:
Citation:

Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析

王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武

Low frequency noise analysis and resistance relaxation in Au/SrTiO3/Au for bipolar resistive switching

Wang Ai-Di, Liu Zi-Yu, Zhang Pei-Jian, Meng Yang, Li Dong, Zhao Hong-Wu
PDF
导出引用
  • 本文研究了Au/SrTiO3/Au三明治结构中的双极电阻翻转效应, 观察到高、低阻态的电阻弛豫现象. 低频噪声测量表明高、低阻态的电阻涨落表现出1/f行为. 对比试验表明, 高阻态的低频噪声来源于反向偏置肖特基势垒和氧空位的迁移, 强度较大, 低阻态的噪声则源于类欧姆接触底电极区域的氧空位迁移导致的载流子涨落, 强度较低. 同时, 界面上氧空位浓度的弛豫导致了高、低阻态的弛豫过程.
    The resistance relaxation in Au/SrTiO3/Au sandwiches with bipolar resistance switching has been investigated by the low frequency analysis. The power spectral density of the conducting current fluctuation in the high resistance state and the low resistance state shows 1/f behaviors. By contrast experiment, the low frequency noise for the high resistance state is ascribed to the Schottky barrier under reverse bias and the oxygen vacancy diffusion, while the noise in the low resistance state is due to the carriers fluctuation arising from the oxygen vacancy migration. The resistance relaxation can be further understood as the diffusion of oxygen vacancies under an electric field.
    • 基金项目: 国家重点基础研究发展规划项目(批准号:2009CB930803,2013CB921700)和国家自然科学基金(批准号:10834012)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB930803, 2013CB921700), and the National Natural Science Foundation of China (Grant No. 10834012).
    [1]

    Waser R, Aono M 2007 Nature materials 6 833

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R, Williams R S 2008 Nanotechnology 3 429

    [3]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [4]

    Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A L D, Ribeiro G M, Williams R S 2010 Adv. Mater. 22 3573

    [5]

    Miao F, Yang J J, Borghetti J, Ribeiro G M, Williams R S 2011 Nanotechnology 22 254007

    [6]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003

    [7]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Ribeiro G M, Williams R S 2011 Nanotechnology 22 254015

    [8]

    Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R 2011 Nanotechnology 22 254001

    [9]

    Kim K M, Jeong D S, Huang C S 2011 Nanotechnology 22 254002

    [10]

    Pennetta C, Trefan T, Reggiani L 2000 Phys. Rev. Lett. 85 5238

    [11]

    Li S L, Liao Z L, Li J, Gang J L, Zheng D N 2009 Journal of Physics D: Applied Physics 42 045411

    [12]

    Sasaki M, 2012 J. Appl. Phys. 112 014501

    [13]

    Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403

    [14]

    Schulman A, Rozenberg M J, Acha C 2012 Phys. Rev. B 86 104426

    [15]

    Ielmini D, Nardi F, Cagli C 2010 Appl. Phys. Lett. 96 053503

    [16]

    Lee J K, Lee J W, Park J, Chung S W, Roh J S, Hong S J, Cho I W, Kwon H I, Lee J H 2011 Appl. Phys. Lett. 98 143502

    [17]

    Lee S B, Park S, Lee J S, Chae S C, Chang S H, Jung M H, Jo Y, Kahng B, Kang B S, Lee M J, Noh T W 2009 Appl. Phys. Lett. 95 122112

    [18]

    Maccaronio V, Crupi F, Procel L M, Goux L, Simoen E, Trojman L, Miranda E 2013 Microelectronic Engineering 107 1

    [19]

    Zhang P J, Meng Y, Liu Z Y, Li D, Su T, Meng Q Y, Mao Q, Pan X Y, Chen D M, Zhao H W 2012 J. Appl. Phys. 111 063702

    [20]

    Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106

    [21]

    Weissman M B 1988 Reviews of Moden Physics 60 537

    [22]

    Lee M S, Lee J K, Hwang H S, Shin H C, Park B G, Park Y J, Lee J H 2011 Japanese Journal of Applied Physics 50 011501

    [23]

    Park C H, Lee J H 2012 Solid-State Electronics 69 85

    [24]

    Janousch M, Meijer G I, Staub U, Delley B, Karg S F, Andreasson B P 2007 Adv. Mater. 19 2232

  • [1]

    Waser R, Aono M 2007 Nature materials 6 833

    [2]

    Yang J J, Pickett M D, Li X, Ohlberg D A A, Stewart D R, Williams R S 2008 Nanotechnology 3 429

    [3]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [4]

    Strachan J P, Pickett M D, Yang J J, Aloni S, Kilcoyne A L D, Ribeiro G M, Williams R S 2010 Adv. Mater. 22 3573

    [5]

    Miao F, Yang J J, Borghetti J, Ribeiro G M, Williams R S 2011 Nanotechnology 22 254007

    [6]

    Valov I, Waser R, Jameson J R, Kozicki M N 2011 Nanotechnology 22 254003

    [7]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Ribeiro G M, Williams R S 2011 Nanotechnology 22 254015

    [8]

    Szot K, Rogala M, Speier W, Klusek Z, Besmehn A, Waser R 2011 Nanotechnology 22 254001

    [9]

    Kim K M, Jeong D S, Huang C S 2011 Nanotechnology 22 254002

    [10]

    Pennetta C, Trefan T, Reggiani L 2000 Phys. Rev. Lett. 85 5238

    [11]

    Li S L, Liao Z L, Li J, Gang J L, Zheng D N 2009 Journal of Physics D: Applied Physics 42 045411

    [12]

    Sasaki M, 2012 J. Appl. Phys. 112 014501

    [13]

    Nian Y B, Strozier J, Wu N J, Chen X, Ignatiev A 2007 Phys. Rev. Lett. 98 146403

    [14]

    Schulman A, Rozenberg M J, Acha C 2012 Phys. Rev. B 86 104426

    [15]

    Ielmini D, Nardi F, Cagli C 2010 Appl. Phys. Lett. 96 053503

    [16]

    Lee J K, Lee J W, Park J, Chung S W, Roh J S, Hong S J, Cho I W, Kwon H I, Lee J H 2011 Appl. Phys. Lett. 98 143502

    [17]

    Lee S B, Park S, Lee J S, Chae S C, Chang S H, Jung M H, Jo Y, Kahng B, Kang B S, Lee M J, Noh T W 2009 Appl. Phys. Lett. 95 122112

    [18]

    Maccaronio V, Crupi F, Procel L M, Goux L, Simoen E, Trojman L, Miranda E 2013 Microelectronic Engineering 107 1

    [19]

    Zhang P J, Meng Y, Liu Z Y, Li D, Su T, Meng Q Y, Mao Q, Pan X Y, Chen D M, Zhao H W 2012 J. Appl. Phys. 111 063702

    [20]

    Shang D S, Sun J R, Shi L, Shen B G 2008 Appl. Phys. Lett. 93 102106

    [21]

    Weissman M B 1988 Reviews of Moden Physics 60 537

    [22]

    Lee M S, Lee J K, Hwang H S, Shin H C, Park B G, Park Y J, Lee J H 2011 Japanese Journal of Applied Physics 50 011501

    [23]

    Park C H, Lee J H 2012 Solid-State Electronics 69 85

    [24]

    Janousch M, Meijer G I, Staub U, Delley B, Karg S F, Andreasson B P 2007 Adv. Mater. 19 2232

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏. Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应. 物理学报, 2022, 71(18): 187303. doi: 10.7498/aps.71.20220609
    [3] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [4] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [5] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [6] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [7] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [8] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [9] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [10] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [11] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [12] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [13] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [14] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性. 物理学报, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [15] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [16] 沈庆鹤, 高志伟, 丁怀义, 张光辉, 潘楠, 王晓平. Ga掺杂对ZnO纳米结构可见光发射的抑制效应. 物理学报, 2012, 61(16): 167105. doi: 10.7498/aps.61.167105
    [17] 张培健, 孟洋, 刘紫玉, 潘新宇, 梁学锦, 陈东敏, 赵宏武. 缺陷分布对Ag-SiO2薄膜电阻翻转效应的影响. 物理学报, 2012, 61(10): 107703. doi: 10.7498/aps.61.107703
    [18] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [19] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究. 物理学报, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  4208
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2013-06-19
  • 刊出日期:  2013-10-05

/

返回文章
返回