搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga1-xInxNyAs1-y/GaAs量子阱中电子-LO声子的散射率

陈茜 王海龙 汪辉 龚谦 宋志棠

引用本文:
Citation:

Ga1-xInxNyAs1-y/GaAs量子阱中电子-LO声子的散射率

陈茜, 王海龙, 汪辉, 龚谦, 宋志棠

Electron-LO phonon scattering in Ga1-xInxNyAs1-y/GaAs quantum well

Chen Qian, Wang Hai-Long, Wang Hui, Gong Qian, Song Zhi-Tang
PDF
导出引用
  • 在有效质量近似下利用打靶法求出Ga1-xInxNyAs1-y/GaAs量子阱中的本征能级En, 并通过费米黄金规则计算电子-LO声子由第一激发态到基态的散射率和平均散射率随温度、阱宽以及氮(N)和铟(In)组分变化的规律. 计算结果表明: 在In 组分恒定的情况下, 随着N组分的增加, 散射率和平均散射率增加; 在N组分恒定的情况下, 随着In组分的增加, 散射率和平均散射率减小; 随着温度的增加, 在温度较低时散射率和平均散射率随温度的增加变化不大, 在温度较高时随温度的增加而增加; 随着阱宽的增加, 散射率和平均散射率都是先增加到一个最大值, 然后再减小, 最大值出现在阱宽200 Å附近. 计算结果对Ga1-xInxNyAs1-y/GaAs量子阱在光电子器件应用方面有一定的指导意义.
    Within the framework of effective mass approximation, the values of energy eigenvalue En in Ga1-xInxNyAs1-y/GaAs quantum well are theoretically calculated using shooting method. In addition, we calculate the electron-LO phonon scattering and mean scattering rate at different temperatures, well width, N concentrations and In concentrations for an electron initially in the second subband and finally in the ground state using Fermi’s golden rule. It is shown that the electron-LO phonon scattering and mean scattering rate increase with the increase of N concentration under the In concentration constant. The electron-LO phonon scattering and mean scattering rate decrease with the increase of In concentration under the In concentration constant. The electron-LO phonon scattering increases monotonically with the increase of temperature. When the temperature is relatively low, the variation of mean scattering rate is not obvious with the increase of temperature When the temperature is relatively high, mean scattering rate increases with the increase of temperature. The scattering and mean scattering rate increase up to their maxima and then begin to decrease as the well width increases. The maximum value is reached when the well width is about 200 Å. Our calculated results are meaningful and can be used for designing the optoelectronic devices based on Ga1-xInxNyAs1-y/GaAs quantum well.
    • 基金项目: 国家自然科学基金(批准号: 60976015, 61176065)、山东省自然科学基金 (批准号: ZR2010FM023)和信息功能材料国家重点实验开放基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976015, 61176065), the Natural Science Foundation of Shandong (Grant No. ZR2010FM023), and the Open Project of State Key Laboratory of Functional Materials for Informatics, China.
    [1]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [2]

    Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314

    [3]

    Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 物理学报 60 047805]

    [4]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [5]

    Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [6]

    Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319

    [7]

    Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926

    [8]

    Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167

    [9]

    Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711

    [10]

    Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746

    [11]

    Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911

    [12]

    Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121

    [13]

    Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326

    [14]

    Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965

    [15]

    Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397

    [16]

    Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375

    [17]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [18]

    Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [19]

    Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817

    [20]

    Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567

    [21]

    Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296

    [22]

    Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490

    [23]

    Rudin S 1990 Phys. Rev. B 41 7713

    [24]

    Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387

  • [1]

    Lin G J, Lai H K, Li C, Chen S Y, Yu J Z 2008 Chin. Phys. B 17 3479

    [2]

    Wu Y F, Liang X X, Baja K K 2005 Chin. Phys. B 14 2314

    [3]

    Zheng Y J, Ji Z W, Xu X G 2011 Acta Phys. Sin. 60 047805 (in Chinese) [郑雨军, 冀子武, 徐现刚 2011 物理学报 60 047805]

    [4]

    Wang H L, Jiang L M, Gong Q, Feng S L 2010 Physica B 405 3818

    [5]

    Kondow M, UomiK, Niwa A, Watahiki S, Yazawa Y 1996 Jpn. J. Appl. Phys. 35 1273

    [6]

    Spuhler G J, Krainer L, Liverini V, Grange R, Haiml M, Pawlik S, Schmidt B, Schön S, Keller U 2005 Phot. Technol. Lett. 17 1319

    [7]

    Rutz A, Liverini V, Maas D J H C, Rudin B, Bellancourt A R, Schön S, Keller U 2006 Elec. Lett. 42 926

    [8]

    Zhan L, Chan K S, Pun E Y B, Ho H P 2003 Opt. Commun. 228 167

    [9]

    Kondow M, Nakatsuka S, Kitatani T, Yazawa Y, Okai M 1996 Jpn. J. Appl. Phys. 35 5711

    [10]

    Kondow M, Kitatani T 2002 Semicod. Sci. Technol. 17 746

    [11]

    Zhang S Y, Niu Z C, Ni H Q, Wu D H, He Z H, Sun Z, Han Q, Wu R H 2005 Appl. Phys. Lett. 87 161911

    [12]

    Niu Z C, Zhang S Y, Ni H Q, Han Q, Yang X H, Wu D H, Zhao H, Peng H L, Xu Y Q, Du Y, Li S Y, He Z H, Ren Z W, Zhou Z Q, Xiong Y H, Wang H L, Wu R H 2005 Appl. Phys. Lett. 87 231121

    [13]

    Niu Z C, Ni H Q, Xu X H, Zhang W, Xu Y Q, Wu R H 2003 Phys. Rev. B 68 235326

    [14]

    Sawaki N 1986 J. Phys. C: Solid State Phys. 19 4965

    [15]

    Weber G, Paula A M D, Ryan J F 1991 Semicod. Sci. Technol. 6 397

    [16]

    Xie W F, Zhu W 2012 Commun. Theor. Phys. 38 375

    [17]

    Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 物理学报 61 087201]

    [18]

    Xia Z L, Fang Z X, Shao J D 2006 Acta Phys. Sin. 55 3007 (in Chinese) [夏志林, 范正修, 邵建达 2006 物理学报 55 3007]

    [19]

    Murdin B N, Hollingworth A R, Kamal-Saadi M, Kotitschke R T 1999 Phys. Rev. B 59 R7817

    [20]

    Wetzel C, Walukiewicz W, Ager Ⅲ J W 1997 Proc. Mat. Res. Soc. Symp. 449 567

    [21]

    Zheng Y S, Lu T Q 1997 Semicond. Sci. Technol. 12 296

    [22]

    Blom P W M, Haverkort J E M, Hail P J, Wolter J H 1993 Appl. Phys. Lett. 62 1490

    [23]

    Rudin S 1990 Phys. Rev. B 41 7713

    [24]

    Potter R J, Balkan N 2004 J. Phys.: Condens. Matter 16 S3387

  • [1] 郭家明, 薛迅. 克尔度规引力场对费米子的量子散射. 物理学报, 2022, 71(21): 210401. doi: 10.7498/aps.71.20220876
    [2] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射. 物理学报, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [3] 张雪冰, 刘乃漳, 姚若河. AlGaN/GaN高电子迁移率晶体管中二维电子气的极化光学声子散射. 物理学报, 2020, 69(15): 157303. doi: 10.7498/aps.69.20200250
    [4] 霍龙桦, 谢国锋. 表面低配位原子对声子的散射机制. 物理学报, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [5] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [6] 赵凤岐, 张敏, 李志强, 姬延明. 纤锌矿In0.19Ga0.81N/GaN量子阱中光学声子和内建电场对束缚极化子结合能的影响. 物理学报, 2014, 63(17): 177101. doi: 10.7498/aps.63.177101
    [7] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率. 物理学报, 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [8] 韩 鹏, 金奎娟, 周岳亮, 周庆莉, 王 旭, 赵嵩卿, 马中水. GaAs/Ga1-xAlxAs半导体量子阱光辐射-热离子制冷. 物理学报, 2005, 54(9): 4345-4349. doi: 10.7498/aps.54.4345
    [9] 何明, 段宜武, 朱熙文, 施磊. Paul阱中共面构型三费米子的量子力学运动. 物理学报, 2001, 50(2): 198-203. doi: 10.7498/aps.50.198
    [10] 金奎娟, 潘少华, 杨国桢. 量子阱中电子-LO声子相互作用引起共振喇曼散射的不对称线形. 物理学报, 1995, 44(2): 299-304. doi: 10.7498/aps.44.299
    [11] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率. 物理学报, 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [12] 齐鸣, 罗晋生, 白樫淳一, 野崎真次, 高桥清, 德光永辅, 小长井诚. 重碳掺杂p型GaAs中纵光学声子与等离振子耦合模的Raman散射特性. 物理学报, 1993, 42(6): 963-968. doi: 10.7498/aps.42.963
    [13] 方晓明, 沈学础, 侯宏启, 冯巍, 周均铭. In0.15Ga0.85As—GaAs应力层多量子阱中束缚子带—连续带跃迁. 物理学报, 1990, 39(4): 627-631. doi: 10.7498/aps.39.627
    [14] 王仁智, 黄美纯. Ga1-xAlxAs光学声子形变势研究. 物理学报, 1990, 39(11): 1778-1784. doi: 10.7498/aps.39.1778
    [15] 堪季强;龙期威;汪克林. 小空位团浅能级对正电子的声子激发比捕获率. 物理学报, 1989, 38(8): 1360-1363. doi: 10.7498/aps.38.1360
    [16] 刘福绥, 范希庆, 刘砚章, 王淮生, 阮英超. 电子多声子作用对散射时间的效应. 物理学报, 1989, 38(1): 154-158. doi: 10.7498/aps.38.154
    [17] 朱嘉麟, 唐道华, 熊家炯, 顾秉林. 电场下GaAs/Ga1-xAlxAs量子阱中的子带和激子. 物理学报, 1989, 38(3): 385-393. doi: 10.7498/aps.38.385
    [18] 傅英, 徐文兰. Ge1-xSix混晶声子谱. 物理学报, 1988, 37(1): 162-166. doi: 10.7498/aps.37.162
    [19] 陆卫;叶红娟;陶凤翔;沈学础;方志烈;劳浦东. 液相外延GaAs_(1-x)_P_x_混晶的光学声子,等离子体激元和LO声子-等离子激元耦合模. 物理学报, 1987, 36(8): 965-973. doi: 10.7498/aps.36.965
    [20] 钱祖文. 关于声散射声. 物理学报, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  5039
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-09
  • 修回日期:  2013-08-19
  • 刊出日期:  2013-11-05

/

返回文章
返回