搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碘化铟晶体本征缺陷的第一性原理研究

张伟 徐朝鹏 王海燕 陈飞鸿 何畅

引用本文:
Citation:

碘化铟晶体本征缺陷的第一性原理研究

张伟, 徐朝鹏, 王海燕, 陈飞鸿, 何畅

First-principles study of the native defects in InI crystal

Zhang Wei, Xu Zhao-Peng, Wang Hai-Yan, Chen Fei-Hong, He Chang
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法,对正交碘化铟(InI)晶体可能存在的6种本征点缺陷(碘空位、铟空位、碘占铟位、铟占碘位、碘间隙、铟间隙)结构进行优化. 通过缺陷形成能的计算,得出各缺陷在生长过程中形成的难易程度;通过态密度的计算,分析出各种缺陷能级位置及其对载流子传输的影响. 结果表明:最主要的低能缺陷铟间隙会引入复合中心和深空穴陷阱,前者降低少数载流子的寿命,后者俘获价带的空穴而降低空穴的迁移率-寿命积. 计算结果为实验中提高InI 晶体载流子的迁移率-寿命积提供理论指导,对获得性能优异的InI核辐射探测材料有重要帮助.
    The structures of six possible native point defects (I and In vacancies, I and In antisites, I and In interstitials) that maybe exist in the orthorhombic indium iodide (InI) crystal are optimized and investigated by the first-principles calculations based on density functional theory. The levels of difficulty in forming defects in their growth processes are obtained by calculating the defect energy levels; the position of each kind of energy level of native point defect and its effect on carrier transport are analyzed via calculating the density of states. The results show that the dominant low-energy defect of In interstitial induces a recombination center and a deep hole trap: the former shortens the lifetime of the minority carriers and the latter captures the holes from the valence band, thereby reducing the mobility-lifetime product of the hole. The calculation results provide a theoretical guidance for improving the mobility-lifetime product of carriers in InI crystal and also are helpful in obtaining the excellent materials for detecting the nuclear radiation of InI crystal.
    • 基金项目: 河北省应用基础研究计划重点基础研究项目(批准号:13961103D)和中国电子科技集团公司第四十六研究所创新基金(批准号:CJ20120208)资助的课题.
    • Funds: Project supported by the Key Basic Research Project of the Applied Basic Research Programs of Hebei Province, China (Grant No. 13961103D) and the Innovation Project of the 46th Research Institute of China Electronics Technology Group Corporation, China (Grant No. CJ20120208).
    [1]

    Runkle R C, Smith L E, Peurrung A J 2009 J. Appl. Phys. 106 041101

    [2]

    Du M H, Singh D J 2010 Phys. Rev. B 82 045203

    [3]

    Jin F, Itoh T, Goto T 1989 J. Phys. Soc. Jpn. 58 2586

    [4]

    Jones R E, Templeton D H 1955 Acta Crystallogr. 8 847

    [5]

    Zhang M G, Yan H Y, Zhang G T, Wei Q, Wang H 2011 Physica B 407 398

    [6]

    Peretti E A 1956 J. Am. Chem. Soc. 78 5745

    [7]

    Levy F, Mooser E 1972 Helv. Phys. Acta 3 69

    [8]

    Ohno N, Fujita M, Nakai Y, Nakamura K 1978 Solid State Commun. 28 137

    [9]

    Nakamura K, Nobuhito O, Masami F, Yoshio N 1979 J. Lumin. 18-19 381

    [10]

    Shah K S, Moy L P, Zhang J, Misra M M, Moses W W 1992 SPIE 1734 161

    [11]

    Kolinko M I 1994 J. Phys. 6 183

    [12]

    Oondera T, Hitomi K, Shoji T 2006 IEEE Trans. Nucl. Sci. 50 3055

    [13]

    Nicoara I, Dicoara N, Bertorello C, Slack G A, Ostrogorsky A G, Groza M, Burger A 2011 Mater. Res. Soc. Symp. Proc. 1341 95

    [14]

    Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) p577 (in Chinese) [介万奇2010晶体生长原理与技术(北京: 科学出版社) 第577页]

    [15]

    Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S 2004 Surf. Sci. 566 122

    [16]

    Chahed A, Benhelal O, Laksari S, Abbar B, Bouhafs B, Aourag H 2005 Physica B 367 142

    [17]

    Li G Q, Zhang X C, Ding G Y, Fan C M, Liang Z H, Han P D 2013 Acta Phys. Sin. 62 127301 (in Chinese) [李国旗, 张小超, 丁光月, 樊彩梅, 梁振海, 韩培德 2013 物理学报 62 127301]

    [18]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [19]

    Bourgoin J C, von Bardeleben H J, Stie-venard D 1988 J. Appl. Phys. 64 65

    [20]

    Zhang M, Zhang C H, Shen J 2011 Chin. Phys. B 20 017101

    [21]

    Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 物理学报 62 137101]

    [22]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. Rev. 95 3851

    [23]

    Haynes W M 2011 Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp5–14

    [24]

    Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰 2007物理学报 56 4062]

    [25]

    Biswas K, Du M H 2011 Appl. Phys. 109 113

  • [1]

    Runkle R C, Smith L E, Peurrung A J 2009 J. Appl. Phys. 106 041101

    [2]

    Du M H, Singh D J 2010 Phys. Rev. B 82 045203

    [3]

    Jin F, Itoh T, Goto T 1989 J. Phys. Soc. Jpn. 58 2586

    [4]

    Jones R E, Templeton D H 1955 Acta Crystallogr. 8 847

    [5]

    Zhang M G, Yan H Y, Zhang G T, Wei Q, Wang H 2011 Physica B 407 398

    [6]

    Peretti E A 1956 J. Am. Chem. Soc. 78 5745

    [7]

    Levy F, Mooser E 1972 Helv. Phys. Acta 3 69

    [8]

    Ohno N, Fujita M, Nakai Y, Nakamura K 1978 Solid State Commun. 28 137

    [9]

    Nakamura K, Nobuhito O, Masami F, Yoshio N 1979 J. Lumin. 18-19 381

    [10]

    Shah K S, Moy L P, Zhang J, Misra M M, Moses W W 1992 SPIE 1734 161

    [11]

    Kolinko M I 1994 J. Phys. 6 183

    [12]

    Oondera T, Hitomi K, Shoji T 2006 IEEE Trans. Nucl. Sci. 50 3055

    [13]

    Nicoara I, Dicoara N, Bertorello C, Slack G A, Ostrogorsky A G, Groza M, Burger A 2011 Mater. Res. Soc. Symp. Proc. 1341 95

    [14]

    Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) p577 (in Chinese) [介万奇2010晶体生长原理与技术(北京: 科学出版社) 第577页]

    [15]

    Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S 2004 Surf. Sci. 566 122

    [16]

    Chahed A, Benhelal O, Laksari S, Abbar B, Bouhafs B, Aourag H 2005 Physica B 367 142

    [17]

    Li G Q, Zhang X C, Ding G Y, Fan C M, Liang Z H, Han P D 2013 Acta Phys. Sin. 62 127301 (in Chinese) [李国旗, 张小超, 丁光月, 樊彩梅, 梁振海, 韩培德 2013 物理学报 62 127301]

    [18]

    Ye H G, Chen G D, Zhu Y Z, Zhang J W 2007 Acta Phys. Sin. 56 5376 (in Chinese) [耶红刚, 陈光德, 竹有章, 张俊武 2007 物理学报 56 5376]

    [19]

    Bourgoin J C, von Bardeleben H J, Stie-venard D 1988 J. Appl. Phys. 64 65

    [20]

    Zhang M, Zhang C H, Shen J 2011 Chin. Phys. B 20 017101

    [21]

    Wang A L, Wu Z M, Wang C, Hu A Y, Zhao R Y 2013 Acta Phys. Sin. 62 137101 (in Chinese) [王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺 2013 物理学报 62 137101]

    [22]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. Rev. 95 3851

    [23]

    Haynes W M 2011 Handbook of Chemistry and Physics (Boca Raton: CRC Press) pp5–14

    [24]

    Ding S F, Fan G H, Li S T, Xiao B 2007 Acta Phys. Sin. 56 4062 (in Chinese) [丁少锋, 范广涵, 李述体, 肖冰 2007物理学报 56 4062]

    [25]

    Biswas K, Du M H 2011 Appl. Phys. 109 113

  • [1] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, 2023, 72(7): 078201. doi: 10.7498/aps.72.20222300
    [2] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [3] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [4] 莫曼, 曾纪术, 何浩, 张喨, 杜龙, 方志杰. Be, Mg, Mn掺杂CuInO2形成能的第一性原理研究. 物理学报, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [5] 张梅玲, 陈玉红, 张材荣, 李公平. 内在缺陷与Cu掺杂共存对ZnO电磁光学性质影响的第一性原理研究. 物理学报, 2019, 68(8): 087101. doi: 10.7498/aps.68.20182238
    [6] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [7] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [8] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [9] 郝红飞, 王静, 孙锋, 张澜庭. Dy在Nd2Fe14B晶格中的占位及其对Fe原子磁矩影响的第一性原理计算. 物理学报, 2013, 62(11): 117501. doi: 10.7498/aps.62.117501
    [10] 唐冬华, 薛林, 孙立忠, 钟建新. B在Hg0.75Cd0.25Te中掺杂效应的第一性原理研究. 物理学报, 2012, 61(2): 027102. doi: 10.7498/aps.61.027102
    [11] 刘显坤, 刘颖, 钱达志, 郑洲. He原子掺杂铝材料的第一性原理研究. 物理学报, 2010, 59(9): 6450-6456. doi: 10.7498/aps.59.6450
    [12] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [13] 杨 俊, 赵有文, 董志远, 邓爱红, 苗杉杉, 王 博. 深能级缺陷对半绝缘InP材料电学补偿的影响. 物理学报, 2007, 56(2): 1167-1171. doi: 10.7498/aps.56.1167
    [14] 赵有文, 董志远. InP中深能级缺陷的产生与抑制现象. 物理学报, 2007, 56(3): 1476-1479. doi: 10.7498/aps.56.1476
    [15] 耶红刚, 陈光德, 竹有章, 张俊武. 六方AlN本征缺陷的第一性原理研究. 物理学报, 2007, 56(9): 5376-5381. doi: 10.7498/aps.56.5376
    [16] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
    [17] 王德宁, 沈彭年, 王渭源. 深能级陷阱对FET的光瞬态特性、等效噪声电流和漏电流升高的影响. 物理学报, 1987, 36(10): 1264-1272. doi: 10.7498/aps.36.1264
    [18] 傅春寅, 鲁永令, 曾树荣. 半导体深能级瞬态谱中多子脉冲下的少子陷阱响应. 物理学报, 1985, 34(12): 1559-1566. doi: 10.7498/aps.34.1559
    [19] 周炳林, 汪乐, 邵永富, 陈启屿. 砷化镓中深能级陷阱的测量. 物理学报, 1979, 28(3): 350-357. doi: 10.7498/aps.28.350
    [20] 苏文辉, 刘维娜, 何澎民, 邱淑蓁. 面心立方金属的空穴松弛能和空穴形成能的计算. 物理学报, 1965, 21(10): 1767-1775. doi: 10.7498/aps.21.1767
计量
  • 文章访问数:  5569
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-30
  • 修回日期:  2013-09-16
  • 刊出日期:  2013-12-05

/

返回文章
返回