搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元层片共晶凝固过程的特征尺度选择

孟广慧 林鑫

引用本文:
Citation:

二元层片共晶凝固过程的特征尺度选择

孟广慧, 林鑫

Characteristic scale selection of lamellar spacings in binary eutectic solidification

Meng Guang-Hui, Lin Xin
PDF
导出引用
  • 基于Jackson和Hunt二元规则共晶稳态生长理论,在共晶两相的界面溶质守恒条件中引入密度修正项,改进了共晶两相的界面溶质守恒条件. 在此基础上,根据二元层片共晶常规凝固过程中层片组织稳态生长时Gibbs自由能的变化,运用极值形态选择原理确定二元层片共晶凝固过程中层片间距特征尺度选择准则. 理论分析表明,对于给定二元共晶合金,在常规凝固条件下的层片间距选择通常为一有限区间. 此外,理论分析还表明,二元层片共晶稳态生长时其特征尺度的选择可以呈现超稳定性,而且在给定的凝固条件下超稳定性只和给定合金系的物性参数有关. 将该形态选择准则分别运用于物性参数精确已知的Al-Al2Cu,Sn-Pb 和CBr4-C2Cl6 合金系,表明计算结果与实验结果相符合.
    The lamellar spacing, which is formed by solidified melt of eutectic or near-eutectic composition, plays a very important role in determining the properties of final products. In this study, the lamellar spacing of eutectic growth in steady-state is predicted by the method which is established based on the classical Jackson-Hunt theory, and completed by considering the free energy change during eutectic solidification at small undercooling. The density difference between the solid phases is also considered when calculating the diffusion field in the liquid. It is found that a band of lamellar spacings would be generally selected for a given alloy under fixed growth conditions. In addition, the lamellar spacing can be morphologically stable below the minimum undercooling value, and this overstabilization is only dependent on the intrinsic characteristic properties of a given system at a fixed growth velocity. The analysis results are found to be in reasonable agreement with experimental data of Al-Al2Cu, Sn-Pb and CBr4-C2Cl6 systems available from the literature.
    • 基金项目: 国家自然科学基金(批准号:50971102,50201012)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102, 50201012).
    [1]

    Pusztai T, Rátkai L, Szállás A, Gránásy L 2013 Phys. Rev. E 87 032401

    [2]

    Clopet C R, Cochrane R F, Mullins A M 2013 Appl. Phys. Lett. 102 031906

    [3]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [4]

    Wang L, Wang N, Ji L, Yao W J 2013 Acta Phys. Sin. 62 216801 (in Chinese) [王雷, 王楠, 冀林, 姚文静 2013 物理学报 62 216801]

    [5]

    Liu J M, Liu Z G, Wu Z C 1993 Chin. Phys. 2 782

    [6]

    Zhao S, Li J F, Liu L Zhou Y H 2009 Chin. Phys. B 18 1917

    [7]

    Liu X R, Cao C D, Wei B B 2003 Chin. Phys. 12 1266

    [8]

    Wang W M, Niu Y C, Chen J H, Bian X F, Liu J M 2004 Chin. Phys. B 13 1520

    [9]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 2797 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [10]

    Lewis D, Pusztai T, Gránásy L, Warren J, Boettinger W 2004 JOM 56 34

    [11]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [12]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [13]

    Li X M, Li W Q, Jin Q L, Zhou R 2013 Chin. Phys. B 22 078701

    [14]

    Jackson K A 1958 Can. J. Phys. 36 683

    [15]

    Kramer J J, Tiller W A 1965 J. Chem. Phys. 42 257

    [16]

    Jackson K A, Hunt J D 1966 Trans. AIME 236 1129

    [17]

    Magnin P, Trivedi R 1991 Acta Metall. 39 453

    [18]

    Langer J S 1980 Phys. Rev. Lett. 44 1023

    [19]

    Datye V, Langer J S 1981 Phys. Rev. B 24 4155

    [20]

    Akamatsu S, Plapp M, Faivre G, Karma A 2004 Metall. Mater. Trans. A 35 1815

    [21]

    Akamatsu S, Bottin-Rousseau S, Perrut M, Faivre G, Witusiewicz V T, Sturz L 2007 J. Cryst. Growth 299 418

    [22]

    Akamatsu S, Plapp M, Faivre G, Karma A 2002 Phys. Rev. E 66 030501(R)

    [23]

    Baker J C, Cahn J W 1971 Thermodynamics of Solidification in: Hughel T J, Boiling G F (eds) Solidification (Ohio: ASM, Metals Park) p23

    [24]

    Herlach D M 1994 Mater. Sci. Eng. R 12 177

    [25]

    Kim K B, Liu J, Marasli N, Hunt J D 1995 Acta Metall. Mater. 43 2143

    [26]

    Meng G H, Lin X, Huang W D 2007 Acta Metall. Sin. 43 1176 (in Chinese) [孟广慧, 林鑫, 黄卫东 2007 金属学报 43 1176]

    [27]

    Meng G H, Lin X, Huang W D 2008 Mater. Lett. 62 984

    [28]

    Hunt J D, Lu S Z 1994 Handbook of Crystal Growth. Vol.2, Part B: Bulk Crystal Growth: Growth Mechanism and Dynamics (Amsterdam: North Holland) p1111

    [29]

    Meng G H, Lin X, Huang W D 2007 J. Mater. Sci. Technol. 23 851

    [30]

    Ourdjini A, Liu J 1994 Mater. Sci. Techon. 10 312

    [31]

    Liu J, Elliott R 1995 Metall. Mater. Trans. A 26 471

    [32]

    Liu J, Elliott R 1995 J. Cryst. Growth 148 406

    [33]

    Cline H E 1984 Metall. Trans. A 15 1013

    [34]

    Akamatsu S, Bottin-Rousseau S, Faivre G 2004 Phys. Rve. Lett. 93 175701

    [35]

    Double D D 1973 Mater. Sci. Eng. 11 325

  • [1]

    Pusztai T, Rátkai L, Szállás A, Gránásy L 2013 Phys. Rev. E 87 032401

    [2]

    Clopet C R, Cochrane R F, Mullins A M 2013 Appl. Phys. Lett. 102 031906

    [3]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [4]

    Wang L, Wang N, Ji L, Yao W J 2013 Acta Phys. Sin. 62 216801 (in Chinese) [王雷, 王楠, 冀林, 姚文静 2013 物理学报 62 216801]

    [5]

    Liu J M, Liu Z G, Wu Z C 1993 Chin. Phys. 2 782

    [6]

    Zhao S, Li J F, Liu L Zhou Y H 2009 Chin. Phys. B 18 1917

    [7]

    Liu X R, Cao C D, Wei B B 2003 Chin. Phys. 12 1266

    [8]

    Wang W M, Niu Y C, Chen J H, Bian X F, Liu J M 2004 Chin. Phys. B 13 1520

    [9]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 58 2797 (in Chinese) [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [10]

    Lewis D, Pusztai T, Gránásy L, Warren J, Boettinger W 2004 JOM 56 34

    [11]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [12]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [13]

    Li X M, Li W Q, Jin Q L, Zhou R 2013 Chin. Phys. B 22 078701

    [14]

    Jackson K A 1958 Can. J. Phys. 36 683

    [15]

    Kramer J J, Tiller W A 1965 J. Chem. Phys. 42 257

    [16]

    Jackson K A, Hunt J D 1966 Trans. AIME 236 1129

    [17]

    Magnin P, Trivedi R 1991 Acta Metall. 39 453

    [18]

    Langer J S 1980 Phys. Rev. Lett. 44 1023

    [19]

    Datye V, Langer J S 1981 Phys. Rev. B 24 4155

    [20]

    Akamatsu S, Plapp M, Faivre G, Karma A 2004 Metall. Mater. Trans. A 35 1815

    [21]

    Akamatsu S, Bottin-Rousseau S, Perrut M, Faivre G, Witusiewicz V T, Sturz L 2007 J. Cryst. Growth 299 418

    [22]

    Akamatsu S, Plapp M, Faivre G, Karma A 2002 Phys. Rev. E 66 030501(R)

    [23]

    Baker J C, Cahn J W 1971 Thermodynamics of Solidification in: Hughel T J, Boiling G F (eds) Solidification (Ohio: ASM, Metals Park) p23

    [24]

    Herlach D M 1994 Mater. Sci. Eng. R 12 177

    [25]

    Kim K B, Liu J, Marasli N, Hunt J D 1995 Acta Metall. Mater. 43 2143

    [26]

    Meng G H, Lin X, Huang W D 2007 Acta Metall. Sin. 43 1176 (in Chinese) [孟广慧, 林鑫, 黄卫东 2007 金属学报 43 1176]

    [27]

    Meng G H, Lin X, Huang W D 2008 Mater. Lett. 62 984

    [28]

    Hunt J D, Lu S Z 1994 Handbook of Crystal Growth. Vol.2, Part B: Bulk Crystal Growth: Growth Mechanism and Dynamics (Amsterdam: North Holland) p1111

    [29]

    Meng G H, Lin X, Huang W D 2007 J. Mater. Sci. Technol. 23 851

    [30]

    Ourdjini A, Liu J 1994 Mater. Sci. Techon. 10 312

    [31]

    Liu J, Elliott R 1995 Metall. Mater. Trans. A 26 471

    [32]

    Liu J, Elliott R 1995 J. Cryst. Growth 148 406

    [33]

    Cline H E 1984 Metall. Trans. A 15 1013

    [34]

    Akamatsu S, Bottin-Rousseau S, Faivre G 2004 Phys. Rve. Lett. 93 175701

    [35]

    Double D D 1973 Mater. Sci. Eng. 11 325

  • [1] 郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐. 姜黄素与邻苯二酚共晶的太赫兹光谱. 物理学报, 2023, 72(17): 173201. doi: 10.7498/aps.72.20230739
    [2] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [3] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [4] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [5] 刘海, 李启楷, 何远航. 六硝基六氮杂异伍兹烷/2, 4, 6-三硝基甲苯共晶冲击起爆过程的分子动力学模拟. 物理学报, 2015, 64(1): 018201. doi: 10.7498/aps.64.018201
    [6] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [7] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [8] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [9] 李国建, 王强, 曹永泽, 吕逍, 李东刚, 赫冀成. 初始温度和冷却速率对金属团簇凝固行为的影响. 物理学报, 2011, 60(9): 093601. doi: 10.7498/aps.60.093601
    [10] 吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长. 物理学报, 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [11] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [12] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [13] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [14] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [15] 朱耀产, 王锦程, 杨根仓, 杨玉娟. 三种变速条件下共晶生长的多相场法模拟. 物理学报, 2007, 56(9): 5542-5547. doi: 10.7498/aps.56.5542
    [16] 王海燕, 刘日平, 马明臻, 高 明, 姚玉书, 王文魁. FeSi2合金在高压下的凝固. 物理学报, 2004, 53(7): 2378-2383. doi: 10.7498/aps.53.2378
    [17] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [18] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [19] 黄卫东, 林 鑫, 李 涛, 王琳琳, Y. Inatomi. 单相合金凝固过程时间相关的界面稳定性(Ⅱ)实验对比. 物理学报, 2004, 53(11): 3978-3983. doi: 10.7498/aps.53.3978
    [20] 刘俊明. 层状共晶定向凝固. 物理学报, 1992, 41(5): 861-868. doi: 10.7498/aps.41.861
计量
  • 文章访问数:  5395
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-13
  • 修回日期:  2013-11-27
  • 刊出日期:  2014-03-05

/

返回文章
返回