搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于科赫分形的新型超材料双频吸收器

马岩冰 张怀武 李元勋

引用本文:
Citation:

基于科赫分形的新型超材料双频吸收器

马岩冰, 张怀武, 李元勋

Study on a novel dual-band metamaterial absorber by using fractal Koch curves

Ma Yan-Bing, Zhang Huai-Wu, Li Yuan-Xun
PDF
导出引用
  • 本文提出了一种基于科赫(Koch)分形结构的新型超材料双频吸收器,其由二阶科赫分形阵列、介质层和金属背板三部分组成. 通过利用分形结构的空间填充性,其单元尺寸在相同吸收频率下相对于具有正方形谐振结构的传统吸收器有近17.5%的尺寸缩减. 与传统实现多频工作的组合法、层叠法不同,该型吸收器的双频特性来源于科赫分形曲线在电磁波激励下呈现出的两种不同的谐振模式. 而且由于结构上具有旋转对称性,该型吸收器对入射波的极化方向不敏感,在横电波、横磁波大角度入射时仍能保持较高的吸收率. 文中采用等效介质理论对该型吸收器进行了分析,测量结果与仿真结果取得了较好的一致性.
    In this paper we present a novel dual-band metamaterial absorber (MA), which is composed of a periodically arranged 2nd order Koch curve array and a metal ground separated by a dielectric spacer. By employing the fractal characteristic of space-filling, more compact unit cell with a size reduction of 17.5% has been achieved as compared with the conventional square-shaped MA. The dual-band operation is not originated from the hybrid or stacked methods as reported before, but from the two distinct resonance modes of the 2nd order Koch curves induced by the incident electromagnetic wave, and can be realized within a single unit cell. Due to its rotationally symmetric pattern, the absorptivity of the above presented MA is insensitive to the polarization of the incident waves and can perform well in a wide range of incident angles. The effective medium theory has been employed to investigate the underlying physical mechanism of the fractal MA, and good agreements between simulation and experimental results have been achieved.
    • 基金项目: 国家自然科学基金(批准号:60721001,51132003,61171047)、国家自然科学基金青年科学基金(批准号:61001025)和广东省国家科技发展规划(批准号:2010B090400314)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60721001, 51132003, 61171047), the National Natural Science Foundation for Youth of China (Grant No. 61001025), and the National Programs for Science and Technology Development of Guangdong Province, China (Grant No. 2010B090400314).
    [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor J, Dalvit D AR, Chen H T 2013 Science 340 1304

    [4]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [5]

    Tao H., Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D. Appl. Phys. 43 225102

    [6]

    Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M, Cummer S A 2008 Appl. Phys. Lett. 93 191110

    [7]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [8]

    Chen H T 2012 Opt. Express 20 7165

    [9]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [10]

    Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W, Feng R S 2008 Appl. Phys. Lett. 92 101106

    [11]

    Wang G Q, Shen J L, Jia Y 2007 J. Appl. Phys. 102 013106

    [12]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [13]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [14]

    Du Q J, Liu J S, Wang K J, Yi X N, Yang H W 2011 Chinese. Phys. Lett. 28 014201

    [15]

    Li H, Yuan L H, Zh B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [16]

    Kollatou T M, Dimitriadis A I, Assimonis S D, Kantartzis N V, Antonopoulos C S 2013 Prog. Electromagn. Res. 136 579

    [17]

    Ye Q W, Liu Y, Lin H, Li M H, Yang H L 2012 Appl. Phys. A 107 155

    [18]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [19]

    Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, Lee Y P 2013 Opt. Express 21 9691

    [20]

    Shen X P Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese)[沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [21]

    Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese)[刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 物理学报 62 134102]

    [22]

    Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516

    [23]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641

    [24]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagn. Res. 108 37

    [25]

    Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T Jun 2011 Opt. Express 19 15221

    [26]

    Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103

    [27]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D. Appl. Phys. 46 195103

    [28]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [30]

    Kuznetsov S A, Paulish A G, Gelfand A V, Lazorskiy P A, Fedorinin V N 2012 Prog. Electromagn. Res. 122 93

    [31]

    O'Hara J F, Smirnova E, Azad A K, Chen H T, Taylor A J 2007 Act. Passive Electron. Compon. 2007

    [32]

    Smith D R, Vier D C, Koschny T h, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [3]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor J, Dalvit D AR, Chen H T 2013 Science 340 1304

    [4]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [5]

    Tao H., Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D. Appl. Phys. 43 225102

    [6]

    Yuan Y, Bingham C, Tyler T, Palit S, Hand T H, Padilla W J, Jokerst N M, Cummer S A 2008 Appl. Phys. Lett. 93 191110

    [7]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [8]

    Chen H T 2012 Opt. Express 20 7165

    [9]

    Liu X, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [10]

    Zhou Q L, Zhang C L, Mu K J, Jin B, Zhang L L, Li W W, Feng R S 2008 Appl. Phys. Lett. 92 101106

    [11]

    Wang G Q, Shen J L, Jia Y 2007 J. Appl. Phys. 102 013106

    [12]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [13]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [14]

    Du Q J, Liu J S, Wang K J, Yi X N, Yang H W 2011 Chinese. Phys. Lett. 28 014201

    [15]

    Li H, Yuan L H, Zh B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [16]

    Kollatou T M, Dimitriadis A I, Assimonis S D, Kantartzis N V, Antonopoulos C S 2013 Prog. Electromagn. Res. 136 579

    [17]

    Ye Q W, Liu Y, Lin H, Li M H, Yang H L 2012 Appl. Phys. A 107 155

    [18]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [19]

    Park J W, Van T P, Rhee J Y, Kim K W, Jang W H, Choi E H, Chen L Y, Lee Y P 2013 Opt. Express 21 9691

    [20]

    Shen X P Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese)[沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [21]

    Liu Y H, Fang S L, Gu S, Zhao X P 2013 Acta Phys. Sin. 62 134102 (in Chinese)[刘亚红, 方石磊, 顾帅, 赵晓鹏 2013 物理学报 62 134102]

    [22]

    Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516

    [23]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641

    [24]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagn. Res. 108 37

    [25]

    Zhang B X, Zhao Y H, Hao Q Z, Kiraly B, Khoo I C, Chen S F, Huang T Jun 2011 Opt. Express 19 15221

    [26]

    Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103

    [27]

    Hu F R, Wang L, Quan B G, Xu X L, Li Z, Wu Z A, Pan X C 2013 J. Phys. D. Appl. Phys. 46 195103

    [28]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [30]

    Kuznetsov S A, Paulish A G, Gelfand A V, Lazorskiy P A, Fedorinin V N 2012 Prog. Electromagn. Res. 122 93

    [31]

    O'Hara J F, Smirnova E, Azad A K, Chen H T, Taylor A J 2007 Act. Passive Electron. Compon. 2007

    [32]

    Smith D R, Vier D C, Koschny T h, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 赵大帅, 孙志, 孙兴, 孙怀得, 韩柏. 基于分形理论的微间隙空气放电. 物理学报, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [4] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [7] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性. 物理学报, 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [8] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [10] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [11] 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法. 物理学报, 2012, 61(16): 160504. doi: 10.7498/aps.61.160504
    [12] 苏斌, 龚伯仪, 赵晓鹏. 树叶状红外频段完美吸收器的仿真设计. 物理学报, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [13] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [14] 杨娟, 卞保民, 彭刚, 李振华. 随机信号双参数脉冲模型的分形特征. 物理学报, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [15] 张丽, 刘树堂. 薄板热扩散分形生长的环境干扰控制. 物理学报, 2010, 59(11): 7708-7712. doi: 10.7498/aps.59.7708
    [16] 樊京, 蔡广宇. 一种基于金属开口谐振环和杆阵列的左手材料宽带吸收器. 物理学报, 2010, 59(9): 6084-6088. doi: 10.7498/aps.59.6084
    [17] 孟田华, 赵国忠, 张存林. 亚波长分形结构太赫兹透射增强的机理研究. 物理学报, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
    [18] 李 彤, 商朋见. 多重分形在掌纹识别中的研究. 物理学报, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] 疏学明, 方 俊, 申世飞, 刘勇进, 袁宏永, 范维澄. 火灾烟雾颗粒凝并分形特性研究. 物理学报, 2006, 55(9): 4466-4471. doi: 10.7498/aps.55.4466
    [20] 刘海文, 孙晓玮, 李征帆, 钱 蓉, 周 旻. 基于分形特征和双层光子带隙结构的宽阻带低通滤波器. 物理学报, 2003, 52(12): 3082-3086. doi: 10.7498/aps.52.3082
计量
  • 文章访问数:  5528
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-17
  • 修回日期:  2014-02-11
  • 刊出日期:  2014-06-05

/

返回文章
返回