搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

隧道场效应晶体管静电放电冲击特性研究

王源 张立忠 曹健 陆光易 贾嵩 张兴

引用本文:
Citation:

隧道场效应晶体管静电放电冲击特性研究

王源, 张立忠, 曹健, 陆光易, 贾嵩, 张兴

Research on electrostatic discharge characteristics of tunnel field effect transistors

Wang Yuan, Zhang Li-Zhong, Cao Jian, Lu Guang-Yi, Jia Song, Zhang Xing
PDF
导出引用
  • 随着器件尺寸的不断减小,集成度的逐步提高,功耗成为了制约集成电路产业界发展的主要问题之一. 由于通过引入带带隧穿机理可以实现更小的亚阈值斜率,隧道场效应晶体管(TFET)器件已成为下一代集成电路的最具竞争力的备选器件之一. 但是TFET器件更薄的栅氧化层、更短的沟道长度容易使器件局部产生高的电流密度、电场密度和热量,使得其更容易遭受静电放电(ESD)冲击损伤. 此外,TFET器件基于带带隧穿机理的全新工作原理也使得其ESD保护设计面临更多挑战. 本文采用传输线脉冲的ESD测试方法深入分析了基本TFET器件在ESD冲击下器件开启、维持、泄放和击穿等过程的电流特性和工作机理. 在此基础之上,给出了一种改进型TFET抗ESD冲击器件,通过在源端增加N型高掺杂区,有效的调节接触势垒形状,降低隧穿结的宽度,从而获得更好的ESD设计窗口.
    Power consumption has been the major bottleneck in the development of integrated circuits with reduced critical dimensions and improved integrated level. Tunnel field effect transistor (TFET) has been investigated as one of the promising replacements for traditional metal oxide semiconductor field effect transistor (MOSFET), owing to the introduction of band to band tunneling (BTBT) mechanism based on which a smaller subthreshold slope is achieved. However, a thinner oxide layer and a shorter channel length in TFET may induce localization of high current density, high electrical field distribution, and generation of heat, which abate the probability to survive electrostatic discharge (ESD). Besides, the novel BTBT operating principles also present a challenge to TFET ESD protection design. In this paper transmission line pulse test method is adopted to analyze the working principle of conventional TFET at onset, holding, discharge, and second breakdown during an ESD event. Based on these a new TFET ESD device protection design is proposed and characterized with a deeply doped n+ pocket near the source region beneath the gate, which can make effective adjustments of contact potential barrier, reduce tunneling junction width, thus better ESD design windows are obtained.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61106101)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106101).
    [1]

    Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W 2004 Solid State Electron. 48 2281

    [2]

    Bhuwalka K K, Schulze J, Eisele I 2004 Jpn. J. Appl. Phys. 43 4073

    [3]
    [4]
    [5]

    Appenzeller J, Lin Y M, Knoch J, Avouris Ph 2004 Phys. Rev. Lett. 93 196805

    [6]

    Uenmura T, Baba T 1996 Jpn. J. Appl. Phys. 35 1668

    [7]
    [8]

    Choi W Y, Park B G, Lee J. D, Liu T J K 2007 IEEE Electron Dev. Lett. 28 743

    [9]
    [10]
    [11]

    Mantl S, Knoll L, Schmidt M, Richter S, Nichau A, Trellenkamp S, Schafer A, Wirths S, Blaeser S, Buca D, Zhao Q T 2013 14^ International Conference on Ultimate Integration on Silicon (ULIS) Coventry, United Kingdom, March 19-21, 2013, p15

    [12]

    Wang Y, Jia S, Sun L, Zhang G G, Zhang X, Ji L 2007 Acta Phys. Sin. 56 7242 (in Chinese)[王源, 贾嵩, 孙磊, 张钢刚, 张兴 2007 物理学报 56 7242]

    [13]
    [14]
    [15]

    Wang A Z 2002 On-chip ESD protection for integrated circuits: an IC design perspective (Boston: Kluwer Academic) p2-7

    [16]
    [17]

    Woo R 2009 Ph. D. Dissertation (California: Stanford University)

    [18]

    Russ C 2008 Microelectron. Reliab. 48 1403

    [19]
    [20]
    [21]

    Kane E O 1961 J Appl Phys 32 83

    [22]
    [23]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Tran. Electron Dev. 39 331

    [24]

    Schenk A 1993 Solid State Electron. 36 19

    [25]
    [26]
    [27]

    Biswas A, Dan S S, Royer C L, Grabinski W, Ionescu A M 2012 Microelectron. Eng. 98 334

    [28]

    Shen C, Yang L T, Samudra G, Yeo Y C 2011 Solid State Electron. 57 23

    [29]
    [30]

    Jiao Y P, Wei K L, Wang T H, Du G, Liu X Y 2013 J. Semiconductor. 34 092002

    [31]
    [32]
    [33]

    Synopsys Corp 2010 Sentaurus Device User Guide. Ver. E-201012

    [34]

    Wu X P, Yang Y T, Gao H X, Dong G, Chai C C 2013 Acta Phys. Sin. 62 047203 (in Chinese)[吴晓鹏, 杨银堂, 高海霞, 董刚, 柴常春 2013 物理学报 62 047203]

    [35]
    [36]
    [37]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 59 8063 (in Chinese)[张冰, 柴常春, 杨银堂 2010 物理学报 59 8063]

  • [1]

    Wang P F, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, Schmitt-Landsiedel D, Hansch W 2004 Solid State Electron. 48 2281

    [2]

    Bhuwalka K K, Schulze J, Eisele I 2004 Jpn. J. Appl. Phys. 43 4073

    [3]
    [4]
    [5]

    Appenzeller J, Lin Y M, Knoch J, Avouris Ph 2004 Phys. Rev. Lett. 93 196805

    [6]

    Uenmura T, Baba T 1996 Jpn. J. Appl. Phys. 35 1668

    [7]
    [8]

    Choi W Y, Park B G, Lee J. D, Liu T J K 2007 IEEE Electron Dev. Lett. 28 743

    [9]
    [10]
    [11]

    Mantl S, Knoll L, Schmidt M, Richter S, Nichau A, Trellenkamp S, Schafer A, Wirths S, Blaeser S, Buca D, Zhao Q T 2013 14^ International Conference on Ultimate Integration on Silicon (ULIS) Coventry, United Kingdom, March 19-21, 2013, p15

    [12]

    Wang Y, Jia S, Sun L, Zhang G G, Zhang X, Ji L 2007 Acta Phys. Sin. 56 7242 (in Chinese)[王源, 贾嵩, 孙磊, 张钢刚, 张兴 2007 物理学报 56 7242]

    [13]
    [14]
    [15]

    Wang A Z 2002 On-chip ESD protection for integrated circuits: an IC design perspective (Boston: Kluwer Academic) p2-7

    [16]
    [17]

    Woo R 2009 Ph. D. Dissertation (California: Stanford University)

    [18]

    Russ C 2008 Microelectron. Reliab. 48 1403

    [19]
    [20]
    [21]

    Kane E O 1961 J Appl Phys 32 83

    [22]
    [23]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Tran. Electron Dev. 39 331

    [24]

    Schenk A 1993 Solid State Electron. 36 19

    [25]
    [26]
    [27]

    Biswas A, Dan S S, Royer C L, Grabinski W, Ionescu A M 2012 Microelectron. Eng. 98 334

    [28]

    Shen C, Yang L T, Samudra G, Yeo Y C 2011 Solid State Electron. 57 23

    [29]
    [30]

    Jiao Y P, Wei K L, Wang T H, Du G, Liu X Y 2013 J. Semiconductor. 34 092002

    [31]
    [32]
    [33]

    Synopsys Corp 2010 Sentaurus Device User Guide. Ver. E-201012

    [34]

    Wu X P, Yang Y T, Gao H X, Dong G, Chai C C 2013 Acta Phys. Sin. 62 047203 (in Chinese)[吴晓鹏, 杨银堂, 高海霞, 董刚, 柴常春 2013 物理学报 62 047203]

    [35]
    [36]
    [37]

    Zhang B, Chai C C, Yang Y T 2010 Acta Phys. Sin. 59 8063 (in Chinese)[张冰, 柴常春, 杨银堂 2010 物理学报 59 8063]

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 刘静, 党跃栋, 刘慧婷, 赵岩. 内嵌横向PNP晶体管的新型静电放电双向防护器件. 物理学报, 2022, 71(23): 238501. doi: 10.7498/aps.71.20220824
    [3] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] 毕思涵, 宋建军, 张栋, 张士琦. 2.45 GHz微波无线能量传输用Ge基双通道整流单端肖特基势垒场效应晶体管. 物理学报, 2022, 71(20): 208401. doi: 10.7498/aps.71.20220855
    [5] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2022, 71(4): 046104. doi: 10.7498/aps.71.20211691
    [6] 李俊霖, 李瑞宾, 丁李利, 陈伟, 刘岩. 脉冲γ射线诱发N型金属氧化物场效应晶体管纵向寄生效应开启机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211691
    [7] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [8] 陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华. 铁电负电容场效应晶体管研究进展. 物理学报, 2020, 69(13): 137701. doi: 10.7498/aps.69.20200354
    [9] 林舒, 夏宁, 王洪广, 李永东, 刘纯亮. 同轴传输线微放电的统计理论稳态建模及敏感区域计算. 物理学报, 2018, 67(22): 227901. doi: 10.7498/aps.67.20181341
    [10] 翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东. 介质部分填充平行平板传输线微放电过程分析. 物理学报, 2018, 67(15): 157901. doi: 10.7498/aps.67.20180351
    [11] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [12] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [13] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [14] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应. 物理学报, 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [15] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [16] 聂国政, 彭俊彪, 周仁龙. CuI/Al双层电极的有机场效应晶体管. 物理学报, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [17] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 徐叙瑢. 非溶剂掺杂完善自组织机理提升高度区域规则的(3-己基噻吩)有机场效应晶体管器件性能的研究. 物理学报, 2011, 60(3): 037201. doi: 10.7498/aps.60.037201
    [18] 吴铁峰, 张鹤鸣, 王冠宇, 胡辉勇. 小尺寸应变Si金属氧化物半导体场效应晶体管栅隧穿电流预测模型. 物理学报, 2011, 60(2): 027305. doi: 10.7498/aps.60.027305
    [19] 张利伟, 王佑贞, 赫丽, 许静平. 基于传输线的单负材料双层结构的隧穿性质. 物理学报, 2010, 59(9): 6106-6110. doi: 10.7498/aps.59.6106
    [20] 刘红, 印海建, 夏树宁. 形变碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(12): 8489-8500. doi: 10.7498/aps.58.8489
计量
  • 文章访问数:  5194
  • PDF下载量:  1193
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-11
  • 修回日期:  2014-04-30
  • 刊出日期:  2014-09-05

/

返回文章
返回